
Contract no. 034707 www.mpower-project.eu

Middleware Platform for eMPOWERing cognitive disabled
and elderly

SIXTH FRAMEWORK PROGRAMME:
PRIORITY 2.5.11 EINCLUSION

SPECIFIC TARGETED RESEARCH OR
INNOVATION PROJECT

 MPOWER Project Deliverable:

Deliverable id:

MPOWER Developers Handbook
 D1.2

Key Information from "Description of Work" (from the Contract)
Developers Handbook. This document will be the main input to developers for
implementing applications based on MPOWER platform.

Deliverable Description

Dissemination Level PU=Public
Deliverable Type R = Report
Original due date
(month number/date)

Month 21 / 31.07.08

Release number/date D1.1/ 22.10.2008

Authorship Information
Editor (person/ partner): Sixto Franco, Greg Loniewski, DI
Partners contributing SINTEF, ARC and UCY
Reviewed by (person/
partner)

Marius Mikalsen, SINTEF

Checked by and released
(person/partner)

Marius Mikalsen, SINTEF

Date of release 22.10.2008

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

MPOWER Consortium
MPOWER (Contract No. 034707) is a Specific Targeted Research or Innovation Project (STREP)
within the 6th Framework Programme, Priority 2.5.11 (eInclusion). The consortium members are:

SINTEF ICT (Project Coordinator) Ericsson Nikola Tesla d.d.
NO-7465 Trondheim, Norway Address

Contact person: Marius Mikalsen Contact person: Ivan Benc
Email: marius.mikalsen@sintef.no Email: ivan.benc@ericsson.com

Austrian Research Centers GmbH - ARC Psykiatrien i Vestfold HF
Wien, Austria Tønsberg, Norway

Contact person: Barbara Prazak Contact person: Torrid Olathe
Email: barbara.prazak@arcsmed.at

Email: torhild.holthe@aldringoghelse.no

Uniwersytet Jagillonski Collegium Medicum TB-Solutions Advanced Technologies S.L.
Krakow, Poland Zaragoza, Spain

Contact person: Mariusz Duplaga Contact person: Mayte Hurtado
Email: mmduplag@cyf-kr.edu.pl Email: hurtadom@tb-solution.com

University of Cyprus Dimension Informatica
Nicosia, Cyprus Valencia, Spain

Contact person: Eleni Themistokleous Contact person: Juan Jose Cubillos-Esteve
Email: eleni.themistokleous@cs.ucy.ac.cy Email: jcubillos@indra.es

 Page 2 of 75

mailto:marius.mikalsen@sintef.no
mailto:ivan.benc@ericsson.com
mailto:barbara.prazak@arcsmed.at
mailto:torhild.holthe@aldringoghelse.no
mailto:mmduplag@cyf-kr.edu.pl
mailto:hurtadom@tb-solution.com
mailto:eleni.themistokleous@cs.ucy.ac.cy
mailto:j.cubillos@dimension-informatica.es

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Table of Contents

...2 MPOWER Consortium
..3 Table of Contents

..5 Table of Figures
 ...7 1 Executive summary

1.1 ..7 Objective
1.2 ...7 Methods
1.3 ..7 Results
1.4 ..7 Conclusions

 ...8 2 Introduction
2.1 ...8 Background and Rational
2.2 ..8 Role of this deliverable
2.3 ..8 Target audience
2.4 ...9 Relationship to other MPOWER deliverables
2.5 ...9 Structure of this document

 ...10 3 Description of the MPOWER platform
3.1 ..10 Introduction
3.2 ..11 Who should use the MPOWER Platform
3.3 ..12 MPOWER Reference Architecture

 ...13 4 Installation guide
4.1 ..13 Required tools, middleware and libraries

4.1.1 ..13 Overview of requirements for scenarios
4.1.2 ...14 Tool, middleware and library details

4.2 ...19 Getting access to the MPOWER Middleware and Tools
 ..20 5 Application Developer’s guide

5.1 ..20 Introduction
5.2 ..21 MPOWER services

5.2.1 ...22 Communication Services
5.2.2 ..23 Information Services
5.2.3 ..24 Management Services
5.2.4 ...25 Security Services
5.2.5 ..26 Sensor Services
5.2.6 ...27 MPOWER components

5.3 ..30 How to use a MPOWER service
5.3.1 ..30 Overview of the process
5.3.2 ...31 Access MPOWER Information services
5.3.3 ..32 Access MPOWER Physical level services
5.3.4 ...33 Accessing HL7 services

5.4 ..39 Example development process using a scenario
5.4.1 ..39 Basic scenario
5.4.2 ...39 Upgraded scenario
5.4.3 ..39 Realization of basic scenario through business process
5.4.4 ...40 Adaption of scenario through business process

5.5 ...40 Step by Step guide for creating a small application
5.6 ..45 Creating and using a business component in BPEL

 ..46 6 Service Developer’s guide to MPOWER
6.1 ..46 How to create a service

6.1.1 ...46 What is an MPOWER service?
6.1.247 Overview of the MPOWER service development methodology

 Page 3 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

6.1.3 ..49 MDA approach
6.1.450 Capturing domain knowledge: User needs – scenarios, use cases and features
6.1.5 ..51 Service Specification – the Platform Independent Models

6.2 ...53 Using the service developer toolchain
6.2.1 ..54 MPOWER toolchain overview
6.2.2 ..55 Information related service
6.2.3 ..60 Physical level related services and components
6.2.4 ..61 HL7 particular case

6.3 ...62 Step by Step guide for creating a service
6.3.1 ..62 Service modelling
6.3.2 ..64 WSDL model transformation
6.3.3 ...68 Service Implementation
6.3.4 ..71 Service Deployment

..74 Definitions, abbreviations and acronyms
...75 References

 Page 4 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Table of Figures

.. 11 Figure 1: Overview of artefacts and their relationships in MPOWER
.. 12 Figure 2: MPOWER Reference Architecture

.. 17 Figure 3: Adding the JDBC driver to Netbeans
... 20 Figure 4: The Application Developer in the MPOWER Actor relationship

... 21 Figure 5: Use Case of the Application Developer
... 22 Figure 6: The MPOWER services

... 23 Figure 7: Communication Services
.. 24 Figure 8: Information Services

.. 25 Figure 9: Management Services
.. 26 Figure 10: Security Services

.. 27 Figure 11: Sensor Services
... 28 Figure 12: Enterprise Service Bus

.. 29 Figure 13: Rule engine operation
... 29 Figure 14: Alarming service mechanism

.. 30 Figure 15: FSA architecture, with unified access
.. 30 Figure 16: Methodology of service and application development

... 31 Figure 17: Detail of an example UML profile
.. 33 Figure 18: MPOWER services for querying sensor

... 35 Figure 19: Medical and social information modelling process
... 36 Figure 20: HL7 Message Development Framework

... 37 Figure 21: HL7 Abstract Message Structure
... 37 Figure 22: HL7 V3 WS Profile Layers

.. 39 Figure 23: Business process for prescribing medication to a patient
...................................... 40 Figure 24: Adapted business process for prescribing medication to a patient

.. 41 Figure 25: Create a new project
.. 41 Figure 26: Select Application type

... 42 Figure 27: Complete the Application details
.. 42 Figure 28: Ready to begin the Application development

.. 43 Figure 29: Create a web service client
.. 43 Figure 30: Inserting details for the web service

... 44 Figure 31: Inserting the service
... 45 Figure 32: Auto code from the IDE

... 48 Figure 33: Service specification process
... 49 Figure 34: The MPOWER User requirements development approach
.. 50 Figure 35: Use case example from MPOWER Management scenarios

... 51 Figure 36: Traceability from use case back to scenarios
.. 51 Figure 37: Features and their relations to use cases

.. 52 Figure 38: Service rationale
... 53 Figure 39: Medical and social information modelling process

... 53 Figure 40: The Service Model with UML Stereotypes
... 55 Figure 41: Toolchain

.. 56 Figure 42: Traceability from use case back to scenario
... 56 Figure 43: The Service Model with UML Stereotypes

.. 57 Figure 44: WSDL model structure
.................................. 57 Figure 45: from generated WSDL model with port type and binding to service

.. 59 Figure 46: Generating web service
........... 60 Figure 47: Steps to be followed when creating a new service for accessing a new device type

.. 62 Figure 48: Management use case diagram

 Page 5 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

... 63 Figure 49: Use case - Scenario mapping
... 63 Figure 50: Stakeholder management features

... 64 Figure 51: Actor Management rational
... 64 Figure 52: Actor Management service interface

.. 65 Figure 53: Transformation a Service Package to WSDL in EA
.. 65 Figure 54: The Model Transformation Dialogue

... 66 Figure 55: The transformation WSDL model hierarchy
..................... 66 Figure 56: Complete service structure, with port type definition and binding to service

.. 67 Figure 57: WSDL file generation
.. 67 Figure 58: Generate WSDL dialogue

... 68 Figure 59: Create new Netbeans project-type
... 69 Figure 60: Create new Netbeans project-information

.. 69 Figure 61: Generating new service from wsdl file
.. 70 Figure 62: Generating new service from the wsdl file-information

.. 70 Figure 63: Generating web service
... 71 Figure 64: Generating web service - source view

... 72 Figure 65: Build the project
... 72 Figure 66: Deploy the web application

... 73 Figure 67: Address of web service endpoint

 Page 6 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

1 Executive summary

1.1 Objective
The main goal of the MPOWER project is to create a middleware platform allowing rapid
development and deployment of distributed and integrated innovative services addressed to support
elderly and cognitively disabled people’s everyday activities. The MPOWER middleware services will
be applied by software developers for creating their applications. MPOWER offers relevant services to
create applications. Software developers must know how to use them as also how to integrate them
efficiently, as the main purpose of its usage is speeding up the development process. The MPOWER
platform is based on SOA architecture, so by using the MPOWER services application developers
reap the benefits brought to them both by the MPOWER platform and the Service Oriented
Architecture.

To facilitate the work with the MPOWER platform, this document has been created, serving as a guide
for MPOWER-based application developers.

1.2 Methods
These developer guidelines has been created based on the experiences gained in the MPOWER
project, by the projects own developers. The guidelines are a compilation of the process that we have
applied in order to build the two MPOWER applications using the MPOWER platform. As such, these
guidelines are built on real life experiences.

1.3 Results
Developing new applications from the scratch or using existing components is always easier when
having clear guidelines provided. This is what this document intends to provide. It guides developers
through the process of using the MPOWER platform, contains guidelines both for application
developers and middleware service developers.

1.4 Conclusions
The use of web-services is the basic of the MPOWER platform, and knowledge on how to use it is
essential. Software developers will not be able to get the maximums benefits from the platform if they
do not know how services are used and what you can expect from them. Other MPOWER deliverables
explain more in details, the use of services provided by MPOWER platform. This document shows all
aspects related to the creation and maintenance of an application or service.

 Page 7 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

2 Introduction

2.1 Background and Rational
MPOWER platform helps developers to decrease developing time of applications in the healthcare
domain. This document describes how to use the services of MPOWER platform and all benefits one
can obtain from using such platform. The use of MPOWER has to be clear and easy in order to really
speed up the development process.

Moreover, MPOWER is a platform of services that can be considered as a base for further
improvements and extensions. So it is important to get an overview of MPOWER, its architecture,
general ideas, maintenance details and way of its enhancement.

2.2 Role of this deliverable
The main purpose of this document is to assist developers in using the MPOWER middleware
platform when facing the task of building applications intended to be used by elderly and cognitive
disabled people. Using MPOWER platform as a base avoids starting the implementation from scratch
and thus saves developers time.

Likewise this document includes guidelines for developers to improve MPOWER by adding new
services to the platform. The document provides an example of how to create and deploy a MPOWER
service in a step by step guide. It also describes all necessary MPOWER issues that an application
developer could need, two aspects of MPOWER services (how they are implemented and how they
can be used), application program interfaces (APIs), toolchain (used by MPOWER developers - not
mandatory) and some case studies. Finally, the document includes a step by step guide of how to
develop an application based on MPOWER platform.

It is important to differentiate between the application developer and the middleware developer. The
application developer will use this document to:

• Get information on the use of MPOWER middleware services in an application development.

• Understand which type of systems that can be built using the MPOWER middleware.

• Understand the structure and usage of MPOWER.

• Know APIs of the services provided in MPOWER.

The middleware developer will use the document to:

• Understand how the MPOWER middleware is designed.

• Guide through implementation and maintenance of the MPOWER middleware.

2.3 Target audience
Two principal target audiences are identified: application developers creating applications based on
MPOWER (using services and facilities offered by MPOWER) and developers who will be in charge
of maintaining and enhancing the MPOWER platform. In this document there is a guide for both
groups of developers.

It is recommended that the readers and users are familiar with web service development. If you are
not, we recommend the following resources to support you in the use of this development guide:

- Java web service resource [1]

- Web service resource [2]

 Page 8 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

2.4 Relationship to other MPOWER deliverables
• D1.1 – Overall architecture: Presents the project approach and reference architecture. The

architecture will impose functional requirements on each of the middleware blocks.

• D1.3 – Service Lifecycle Model: Based on the overall architecture of MPOWER platform,
functional description is provided in a form usable for application developers.

• D2.2: This document describes in detail the design and implementation of components and

services of middleware for the sensor and smart house management.

• D3.1: This document describes in detail the design and implementation of the medical and
social information middleware providing information on the components and services of the
medical and social information middleware.

• D3.2: This document describes in detail the design and implementation of the context

component which manages the context information.

• D4.2: This document describes in detail the design and implementation of the
interoperability middleware services.

• D5.2: This document describes in detail the design and implementation of the security

middleware services.

• D6.2: These documents describe case studies based on the experience acquired during the
Proof of Concept Applications (PoCA’s) development phase. These PoCA’s use services
provided by MPOWER platform and the knowledge generated during their development
process.

2.5 Structure of this document
This document consists of seven chapters, each of which deals with different aspects that application
developer using MPOWER platform has take into account when creating a new application.

The first chapter includes an executive summary. The current chapter provides a brief overview of the
role and structure of the document, and the relationship to other MPOWER deliverables.

The third chapter demonstrates the MPOWER architecture with a short Service Oriented Architecture
(SOA) description. That section starts introducing basic concepts and goals of the platform. It
continues providing information on its SOA reference architecture, the components forming the
platform and their correlations. Profiles of platform users are also identified and described here.

In chapter 4, the installation of MPOWER platform is described. After reading this chapter, the
developer should know the necessary factors to set up MPOWER platform and what are the actions to
be performed when using MPOWER.

Chapter 5 describes how developers can create an application based on MPOWER. Moreover all
services that are available in MPOWER platform are listed.

Chapter 6 illustrates how a new service can be created and added to MPOWER platform. With such
knowledge MPOWER can be easily upgraded.

 Page 9 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

3 Description of the MPOWER platform

3.1 Introduction
MPOWER is an open platform to simplify and speed up the process of developing services for people
with cognitive disabilities and elderly. This platform provides reusable, flexible, and interoperable
service specifications and implementations. Services offered are simple, general and can be adopted in
a custom manner (by application developer) to deal with any kind of scenario that can be detected. The
platform in particular supports integration of SMART HOUSE and sensor technology, interoperability
between domain specific systems, secure information transfer and its management, including both
social and medical information; and mobile users which often change context and tools. MPOWER
aims to take into consideration the main issues related to care of elderly and cognitive disability person
which can be supported by ICT solutions.
Basically the main idea of MPOWER is to give the application developer a reusable base of services
designs and components/services, avoiding starting from scratch, saving developer’s time and
allowing the developer to build application from a set of small pieces which all together create the
complete application. With reference to Figure 1, the reusable artefacts from MPOWER are :

• UML Specifications of Service defined as both Platform Independent Models (PIM) and
Platform Specific Models (PSM)

• Domain Specific UML extensions, including UML profiles for Homecare to enable
specification of domain

• The MPOWER toolchain enabling development of domain services. The toolchain uses the
UML extension and reference architecture to improve model transformation and code
generation

• Runnable Domain Specific Services: the MPOWER Middleware Services that are developed
and available as deployable archives.

• Methodology for developing services and applications in the domain

 Page 10 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

pkg Simplified Overv iew

MPOWER Architecture

+ MPOWER HL7 Information Models
~ MPOWER PIM
~ MPOWER PSM
+ MPOWER Reference Architecture

MDSD HealthCare Framework

+ D1.1 MPOWER Overall Architecture
+ D1.2 MPOWER Developer Handbook
+ D1.3 MPOWER Service Lifecycle Model
+ MPOWER Toolchain

MPOWER Middleware Serv ices

+ MPOWER Communication Services
+ MPOWER Information Services
+ MPOWER Interoperabil ity Services
+ MPOWER Management Services
+ MPOWER Platform Services
+ MPOWER Security Services
+ MPOWER Sensor Services

MPOWER Applications

+ Proof of Concept 1:Poland
+ Proof of Concept 2: Norway

MPOWER UML Extensions

+ IBM Software Service UML Profile

«use»

«use»

«use»

«use»

«use»

«use»

Figure 1: Overview of artefacts and their relationships in MPOWER

3.2 Who should use the MPOWER Platform
MPOWER is addressed to developers in the healthcare domain especially those who create
applications for cognitive disabled and elderly people.

MPOWER is a platform helping in design, development and deployment of interoperable applications
offering innovative end-user services.

There is potentially a large market for healthcare domain services related to aforementioned cognitive
disabled, elderly people. Also nowadays the scope of innovation seems to be attractive. On the other
hand technical difficulties and resulting high development costs make it commercially unattractive.
MPOWER overcomes these difficulties by:

• specifying and implementing components which solve common technical problems when creating

new services,
• a dynamic mapping between medical, social and context information models, sensor and legacy

system interfaces (Information Services),
• challenging the problem of combining SMART HOUSE technology and task specific applications

used by different stakeholders within interoperable services (Sensor Services),
• providing structured mechanisms for representing and adapting to changes in user context in a

distributed or mobile environment (Context Manager),
• promoting standardisation by aligning the M•POWER approach which supports the HL7 and

promoting the platform for members of EAHSA ,
• applying an SOA (Service Oriented Architecture) based architecture that relies on service-

orientation as its design principle. Service-orientation describes an architecture that uses loosely
coupled services to match up the user’s requirements and also requirements of business processes.
Another advantage is avoiding code duplication.

 Page 11 of 75

http://en.wikipedia.org/wiki/Service-orientation
http://en.wikipedia.org/wiki/Service-orientation
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Service_%28Systems_Architecture%29

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

3.3 MPOWER Reference Architecture
Reference architecture is defined as:

 “A high-level, generic architecture which is used as the basis for development of concrete system
architectures, and to compare architectures of existing systems to each other”

The main purpose of using common reference architecture in MPOWER is to aid developers
(application and middleware) in the definition of services; and also to provide a common and unique
abstraction level and concepts for interaction.

The MPOWER SOA reference architecture [3] is based on IBM’s [4] reference architecture for
Service-Oriented Architecture which consists of five layers. Each layer comprising a set of
“components” that conforms to the rules and requirements specified for the layer. Furthermore, the
layers are grouped into three groups: application, domain and system specific group. Such grouping is
done to clearly separate the components that are specific for the applications, for the domain and
underlying systems. The figure below shows a general view of MPOWER architecture following the
IBM SOA reference architecture.

Figure 2: MPOWER Reference Architecture

D1.1 “Overall Architecture” [3] document provides a description of all architectural aspects of an
MPOWER based information system. Please refer to it to know more on the MPOWER reference
architecture.

 Page 12 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

4 Installation guide

4.1 Required tools, middleware and libraries
This subchapter describes the set of tools, middleware and libraries which are required in different
scenarios when developing, testing and deploying software based on MPOWER.

The MPOWER middleware is based on a set of technology standard for which there exist multiple
implementations and multiple tools. The standards applied are:

- UML 2.1

- Java 2 Enterprise Edition (J2EE), version 5.5 or later

- JAX-WS 2.0 (JSR 224) for web services (and not the predecessor JAX-RPC)

- Standard SQL based database

Beyond these standards, some further tools and libraries have also been found to be useful during the
development of the MPOWER middleware, services, and proof-of-concept applications. These are
also listed here, but are optional. Some of these tools are also used in later sections of this handbook,
e.g. in the step-by-step guides for developing services and applications.

The MPOWER middleware is implemented in Java, and a Java runtime environment is needed in
order to deploy the middleware and services. Although future services extending the MPOWER
platform could also be developed in other technologies (e.g. .NET), developing such services in Java
allows the services to be deployed to the same application server as the initial MPOWER services.

Some of the installations described here require that you have administrator rights to the computer on
which to install.

4.1.1 Overview of requirements for scenarios
Each of the following subsections gives a summary of the requirements for a development / testing
scenario. In each of these, only a list of the required tools, middleware and libraries are given. The
ordering of the entries in these lists is also the recommended order of installation. Installation
instructions and version information for each entry is in these lists can be found later in this chapter.

Developing information services and applications

UML Modelling Required

Java Development Kit (JDK) Required

Java IDE Required

Object/relational persistence service Optional

Database driver libraries Optional

Deploying and testing information services and applications

Java Development Kit (JDK) Required

 Page 13 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Application Server Required

Object/relational persistence service Required

Database Required

Database driver libraries Required

Web service testing tool Optional

Developing physical level services

UML Modelling Required

Java Development Kit (JDK) Required

Java IDE Required

Sensor’s specifications Required

Deploying and testing physical level services

Java Development Kit (JDK) Required

Application Server Required

4.1.2 Tool, middleware and library details

4.1.2.1 UML Modelling

A central tool in the MPOWER service development tool-chain is the modelling tool. The support for
modelling and transformation developed in the project is for the tool Enterprise Architect.

Recommended tool: Enterprise Architect

Version: 6.5 or higher, professional or corporate edition.

Note that at the time of writing, the 7.x versions of this tool has a bug which prevents correct WSDL
generation, and thus causes some problems in the MPOWER toolchain.

The tool can be purchased from Sparx Systems:

http://www.sparxsystems.com.au/

To install the tool, follow the instructions provided with the tool.

Installing the UML Profile for Software Services in Enterprise Architect

The recommended approach for modelling of MPOWER applications is based on IBM’s UML Profile
for Software Services. This profile is described at:

http://www.ibm.com/developerworks/rational/library/05/419_soa/

 Page 14 of 75

http://www.sparxsystems.com.au/
http://www.ibm.com/developerworks/rational/library/05/419_soa/

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

The profile is supported by a RSA Plug-In from IBM, which can be downloaded from:

http://www-128.ibm.com/developerworks/rational/library/05/510_svc/

To convert this to a UML profile usable by Enterprise Architect, the following steps are needed:

1. unzip the downloaded file (softsvc.zip)

2. unzip the file com.ibm.rational.softsvc_6.0.0.1.jar found in the plugins directory from step 1

3. rename the file SoftwareServices.epx from from .epx to .emx

4. from Enterprise Architect, first create a new project which will contain the profile

5. select “Import Model from XMI” and click the “Import EMX / UML2 Files” button, then
select the SoftwareServices.emx file

6. select “Save Package as UML Profile” to save the resulting package as a uml profile suitable
for use with Enterprise Architect

The new profile can now be imported in the Enterprise Architect projects in which it will be used by
selecting “Import Profile” in the Resources view.

Installing the WSDL transform in EA

The MPOWER toolchain contains a customized template for WSDL transformation called
MPowerWSDLTemplate.xml. This template can be downloaded from the MPOWER web site. To use
the template, it first has to be imported into the Enterprise Architect project. This is done by choosing
the "Import reference data" from the "Tools" tab. This import will modify some of the built-in
transformations for WSDL.

4.1.2.2 Java Development Kit (JDK)

For developing services and applications in Java, a Java development kit is needed. Some
development environment comes with the JDK bundled, otherwise it should be installed before other
tools.

Version: JDK 6.0 or higher (required)

Can be downloaded from:

http://java.sun.com/javase/downloads/index.jsp

4.1.2.3 Java IDE

The choice of a Java integrated development environment (IDE) is open to the developer, as
MPOWER do not require the use of a particular one. The environment should however include
support for J2EE and JAX-WS 2.0, and preferably have built in facilities or extensions which allow
the developer to import WSDL definitions and generate skeletons for web service implementations
based on these.

Netbeans is an example of a suitable Java integrated development environment (IDE), and is also used
in examples provided in later parts of this document. Eclipse is another alternative, but no examples of
usage for this are provided.

Recommended tool: Netbeans

Version: NetBeans 6.0 or higher

 Page 15 of 75

http://www-128.ibm.com/developerworks/rational/library/05/510_svc/
http://java.sun.com/javase/downloads/index.jsp

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Netbeans can be downloaded from:

http://www.NetBeans.org/index.html

We recommend a download which includes support for at least Base IDE, Java SE, Web & Java
EE, SOA, and GlassFish.

4.1.2.4 Object/relational persistence service

Hibernate is an object/relational persistence service which allow development of persistent classes
using object-oriented mechanisms. Hibernate was used in the implementation of some of the
predefined services of the MPOWER platform. When developing new services, the use of Hibernate is
optional. However, the Hibernate libraries are needed to deploy and test the predefined MPOWER
services.

Recommended tool: Hibernate

Version: Hibernate Core 3.2.4.SP1

Hibernate can be downloaded from the following location, and information of how to install it can
be found in the on-line documentation at the same site:

http://www.hibernate.org/6.html

The “setting up you environment” section of the following link provides some information of how to
install Hibernate in the Netbeans environment.

http://www.NetBeans.org/kb/articles/hibernate-javaee.html

Please note that other sections of the same page seem to be somewhat outdated (e.g., the “Runtime”
window has been renamed to “Services” in Netbeans 6.0, and some wizards are no longer
available).

4.1.2.5 Database

Developers of new services for MPOWER can make their own choice of database. The code for the
MPOWER middleware has been developed with database-neutrality in mind. However, the
middleware has only been tested using an Oracle database, so the degree of compatibility with other
databases is unknown.

Recommended tool: Oracle

Version: Oracle 10g Express edition (XE)

Can be downloaded from:

http://www.oracle.com/technology/xe/index.html

Follow the install instructions provided from Oracle.

4.1.2.6 Database driver libraries

To use a database from an IDE, e.g. the Netbeans environment, you will need a driver library for the
database. The following describes the installation of the required database libraries, e.g. Oracle
libraries, in Netbeans:

 Page 16 of 75

http://www.netbeans.org/index.html
http://www.hibernate.org/6.html
http://www.netbeans.org/kb/articles/hibernate-javaee.html
http://www.oracle.com/technology/xe/index.html

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Open the Services window of Netbeans, and select Drivers under Databases. Select “New Driver…”
from the pop-up menu, click “Add…” in the dialog box, and the select the driver file.

Figure 3: Adding the JDBC driver to Netbeans

To connect to an existing database, select: the new driver that appear (e.g. Oracle), and click “Connect
using…”. A dialog will appear in which you should fill in the URL of the database to connect to,
along with user name and password.

Recommended tool: Oracle JDBC driver

Version: Oracle 10g JDBC driver for JDK 1.4

Can be downloaded from:

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

At the time of writing, the name of the file to download is ojdbc14.jar, and is found under the
Oracle 10g Release 2.

4.1.2.7 Application Server:

To deploy and test the MPOWER middleware and new services and applications based on it, a J2EE
application server is needed. The MPOWER middleware was developed and tested using Glassfish.

Recommended tool: Glassfish with SOA add-ons

Version: Glassfish v2

Download installation from one of the following sites:

 i) https://glassfish.dev.java.net/downloads/v2ur1-b09d.html

 ii) https://open-esb.dev.java.net/Downloads_OpenESB_Addons_NB6.html

For development purposes, you may instead use the Glassfish distribution which is bundled with
some of the Netbeans installations (see the Netbeans section).

 Page 17 of 75

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
https://glassfish.dev.java.net/downloads/v2ur1-b09d.html
https://open-esb.dev.java.net/Downloads_OpenESB_Addons_NB6.html

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

4.1.2.8 Web service testing tool

soapUI is an open source web service testing tool. The tool exists in several variants, e.g. as plug-in
for Netbeans and Eclipse. As Netbeans is the recommended IDE in MPOWER, the references to the
soapUI tool in this document refer to the Netbeans plug-in version.

Recommended tool: soapUI Netbeans Plugin

Version: soapUI 2.0

See downloaded and install instructions at:

http://www.soapui.org/Netbeans/installation.html

The tool is also bundled with the OpenESB add-ons for Netbeans from the Netbeans version 6.0 M9
/ OpenESB 2.0.

4.1.2.9 Enterprise Service Bus

Enterprise Service Bus is an integration environment based on JAVA Business Integration (JBI). It
provides an abstraction layer on top of the messaging mechanisms and moreover a mechanism that
makes use of the business processes concept which plays the role of controllers for the messages flow.
This concept is closely related to the software architecture, especially in the middleware SOA
infrastructures. ESB allows integrate web services and enterprise applications defining the software
infrastructure.

The ESB environment works based on the following concepts: Service Engines (SE), Binding
Components (BC) and a Normalized Message Router (NMR). ESB extends the JBI with additional
services engines performing certain business logic, binding components for different messages
formats, as well as tools and services for managing and monitoring the environment.

MPOWER project uses OpenESB which is SUN’s implementation of ESB. By now it does not work
as a separate runtime environment, but is integrated with the Glassfish application server and Netbeans
IDE. MPOWER platform architecture is planned to use the bpel-service-engines from the OpenESB
implementation (in the case of notification business process) as also the ESB as the messages
interchanging medium (in the case of the FSA and ContextManager component).

Recommended tool: OpenESB

Version: Oracle 10g Express edition (XE)

More information can be found in:

https://open-esb.dev.java.net

Can be downloaded together with Netbeans IDE from:

https://open-esb.dev.java.net/Downloads.html

4.1.2.10 Rules Engine

A rule engine is a computer program that tries to derive answers from a knowledge base. It is the
"brain" that expert systems use to reason about the information in the knowledge base for the ultimate
purpose of formulating new conclusions. Rules consist of two parts: a sensory precondition (or "IF"
statement) and an action (or "THEN"). If a production's precondition matches the current state of the
world, then the production is said to be triggered. If a production's action is executed, it is said to have
fired.

 Page 18 of 75

http://www.soapui.org/netbeans/installation.html
https://open-esb.dev.java.net/Downloads.html

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Rule engine in MPOWER is based on JBoss Rules, an open source and standards-based business rules
engine. MPOWER uses the rule engine for guessing whether a context change has happened, and in
positive case give an answer to new situation.

Recommended tool: JBoss Rules

Version: JBoss Rules 4.0.0.12865

It can be downloaded from:

http://www.jboss.com/downloads/index

4.2 Getting access to the MPOWER Middleware and Tools
The MPOWER Middleware and Tools will be available for download. At the time of writing, the
hosting location has yet to be decided. The hosting location will be published on the project web site:

http://sourceforge.net/projects/mpower

 Page 19 of 75

http://sourceforge.net/projects/mpower

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

5 Application Developer’s guide

5.1 Introduction

From the Application Developer’s perspective the MPOWER provides loosely-coupled sets of
functionalities – services, which can be easily integrated into meaningful applications.

Figure 4 identifies the application developer role in the several roles that exist in the design,
implementation and use of the MPOWER platform.

uc Actors

Application Dev eloper

Middleware Serv ice
Dev eloper

Core Middleware
Dev eloper

Dev ice Integrator

Dev ice Adaptor
Dev eloper

Administrator

Sensor functional specification

Sensor technical specification

Serv ice specificationServ ice development handbook

Core middleware and serv ice documentation

Platform Architect

Application dev elopment handbook

Administration handbook

External Role

External Role

creates

creates uses

uses

creates

creates

uses

uses

uses creates

creates

uses

uses

part of

create

uses

Figure 4: The Application Developer in the MPOWER Actor relationship

Preferential the Application developer should use the MPOWER middleware to build applications this
includes in detail the following (see Figure 5):

• To create and design a graphical user interface (GUI). The user interface is the communication
interface for the user which are the care givers and the person of care. Relating to the
stakeholders there are also needs for special aspects in the design of the GUI which have to be
fulfilled.

• The Application developer has also to build business services by using choreography. The
application developer has to call the service directly. Therefore he has to screen the service
specification to find the functionality needed. For different business functionalities it is also

 Page 20 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

possible to combine the functionality of certain services. A certain business bus has been
implemented. It is the choreography bus to inform different applications and modules. It’s the
Notification Bus (explained in detail in deliverable D4.2. If there is a need on other business
functionalities of the application the application developer has to use choreographing
mechanisms like the Enterprise Service Bus [5] and different services to build business service
functionality. But this business choreography development is normally done by the
middleware developer.

• Building application includes also to instantiate the existing middleware services depending
the specific dedication this could include to adapt the services to the behaviour for specific
users

uc Application Dev eloper Use Cases

Application Dev eloper

Build business
serv ices using
choreography

Create user interface

Build Application
Instansiatie

Middleware Serv ices

Adapt behav iour for
specific user

«extend»

«include»

«include»

«include»

Figure 5: Use Case of the Application Developer

5.2 MPOWER services
The MPOWER project follows the SOA approach. The MPOWER Middleware is a collection of
reusable services and components that can be categorized in five different groups of services. The
categories are:

• Management Services: services for managing services, users, access rights and system
contexts.

• Information Services: services setting and getting information for individual plan, calendar,
medication list, and knowledge sources.

• Sensor Services: services for configuring (add, remove, adjust) devices and retrieving sensor
information.

• Security Services: services for authentication and authorization of users and system
components.

• Communication Services: services for sending messages and notifications to users and
systems.

 Page 21 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

class MPOWER Serv ices

Communication Serv ices

+ Alarming
+ AlarmingBPTemplate
+ Communication
+ CommunicationOverview
+ data / info transfer
+ ExternalNotification
+ SIPCallClient
+ SIPCallManagement
+ SIPCallService
+ SIPStatusService
+ Synchronization

Management Serv ices

+ ContextManagement
+ PatientManagement
+ PersonManagement
+ ProviderManagement
+ ServiceManagement

Security Serv ices

+ encryption
+ User Management
+ Role Management
+ Token Management
+ Access Management
+ Audit
+ AccessControl
+ Public Key Infrastructure
+ Secure Communication
+ Secure Storage

Information Serv ices

+ Accessibil i ty
+ Calendar
+ IndividualPlan
+ Interaction
+ Knowledge
+ Medication

Sensor Serv ices

+ CameraManagement
+ Device Management
+ DoorManagement
+ FlowManagement
+ Location
+ Monitoring
+ OvenManagement
+ PulseOximeterManagement
+ TemperatureControl

Figure 6: The MPOWER services

5.2.1 Communication Services
The Communication Services are mostly services dealing with interoperability features inside the
middleware as well as to services and functionalities outside the MPOWER middleware.

In Error! Reference source not found. you can see the overview of the communication services from
the Enterprise Architect Model. The communication services are clustered in services dealing with
synchronization requirements, data / info transfer, external notification, alarming and communication
in general.

The synchronization services as well the data / info transfer services are coming from a requirement to
communicate data from the internal middleware to external system. These are in general medical
content data of the users which should be provided over an interface to any legacy systems. This
requirement should show that the middleware is no proprietary systems and there are open interfaces.

For demonstration this requirement is solved with the Calendar and Medication export services. The
description of this services can be found in the “D4.2 – Interoperability Middleware Design”
deliverable. These services provide a export of medical data in the Continuity of Care Record (CCR)
format as well as the ICal format.

The Journal Note transfer was as a requirement which was not prioritised during the project but the
functionality to implement it is similar to the design of the services explained in the D4.2 deliverable.

The external notification service are also explained and implemented in the WP4 work package and
the D4.2 deliverable. This service provides an interface where other services can send notification
messages (SMS and Email) with a special content to a certain recipient. This functionality will be used
for notification as a reminder or some low important alarming cases.

The services for the alarming functionality are integrated with a so called notification bus. These
functionalities together provide a alarming handling and a locking of alarming events as well as a bus

 Page 22 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

system for informing and handling the request and the notifications of different client and application
modules. These functionalities are also explained in the D4.2 deliverable.

All communication requirements are solved with the SIP based Voice / Video Communication
Services. These services are able to provide a voice and video communication between different client
stations but also a voice communication to outside external phones. The design and the description of
these services are also to find in the D4.2 deliverable.

class Communication Serv ices

Alarming

+ Alarming
+ AlarmingInterface
+ Database
+ InformationModel
+ Rationale

Communication

+ MessageControl
+ CommunicationInterface
+ Database
+ MessageControl Management
+ Rationale
+ Sequences

data / info transfer

+ JournalNote
+ TransferToProfessionalSystem
+ InformationModel
+ JournalNote Management
+ Rationale
+ TransferSystemMessage Management

ExternalNotification

+ ExternalNotification
+ ExternalNotificationInterface
+ InformationModel
+ Rationale

Synchronization

+ CalendarSynchronizer
+ CAVESynchronizer
+ MedicationSynchronizer
+ SocialInformationSynchronizer
+ TreatmentPlanSynchronizer
+ CalenderSynchronizer Management
+ CAVESynchronizer Management
+ MedicationSynchronizer
+ Rationale
+ SocialInformationSynchronizer Management
+ TreatmentPlan Synchronizer

Figure 7: Communication Services

5.2.2 Information Services
The information Services are dealing with the internal management of the information of the users.
They are basically the services implemented and tested in the Norwegian POCA. Some of the
requirements for services you see in Error! Reference source not found. have been implemented
some other have finally not prioritised enough.

The services that have been implemented are the services in the medication package. All the
information management inside the middleware is based on the HL7 format. Different stakeholders are
able to subscribe medications to the user via the web interface. The users on his application are able to
have always a overview of which medication to take. The medication content is stored in the HL7
structure inside the middleware database.

Also the service in the Calendar and Individual Plan package has been implemented. They manage a
personal calendar and different appointments as well as different contacts.

The design and the service description of the implemented Information services are explained in the
“D3.2 – Design middleware service for context information” deliverable.

 Page 23 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

class Information Serv ices

Accessibility

+ Text2Speech

Calendar

+ CalendarManagement
+ CalendarManagement
+ InformationModel
+ Rationale

Indiv idualPlan

+ ContactListControl
+ Diagnoses
+ IndividualPlan
+ IndividualPlanControl
+ Memo
+ MemoControl
+ Schedule

Interaction

+ CallManagement
+ Education
+ Entertainment
+ MediaManagement
+ VoiceCall

Knowledge

+ KnowledgeManagement
+ KnowledgeQuery
+ MetaEditing

Medication

+ MedicationManagement
+ MedicationPlanSynchronizer
+ InformationModel
+ MedicationManagement
+ Rationale

Figure 8: Information Services

5.2.3 Management Services
The Management Services are implemented in different in different work packages.

Concerning the Service Management requirements there has been implemented a UDDI Service
Registry. The design and the description of the UDDI Service Registry can be found in the D4.2
deliverable.

The Context Management is part of the Sensor Services because it managed the context which is
mostly detected by different sensors. The Context Management is explained in the D2.2 deliverable.

The service functionality in the Actor Management cluster is implemented together with the security
service, because the actor management is strong connected with the rights of the different
stakeholders. All information concerning certain stakeholders and their user rights are stored in the
MPOWER database and should be defined and configured when setting up the environment for a
certain user.

 Page 24 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

class Management Serv ices

Actor Management

ContextManagement

+ Context
+ ItemLocator
+ ContextManager
+ Locator
+ ContextManagement
+ InformationModel
+ Rationale

Serv iceManagement

+ ServiceManagement
+ InformationModel
+ ManagementServices
+ Rationale

PersonManagement

+ PersonActorControl
+ Interface
+ Rationale

PatientManagement

+ PatientActorControl
+ iPatientManagement
+ ActorManagementInformationModel
+ Interface
+ Rationale

Prov iderManagement

+ ProviderActorControl
+ Interface
+ Rationale

Figure 9: Management Services

5.2.4 Security Services
The Security Services have been implemented as a feature which provides security in all middleware
layers. There are different kinds of security functionalities for services and actors. Basically different
actors are identified using tokens which allow or deny the permission in a particular case. Not every
actor can use all services. The restriction is assigned to the role which the actor possesses in the use
case (e.g. patient and therapist).

A detailed explanation of the different security functionalities you can find in the “D5.2 – Design of
Security Middleware”.

 Page 25 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

class Security Serv ices

AccessControl

+ Authentication
+ Authorization
+ AccessControl Information Model
+ AccessControlInterface
+ Rationale

User Management

+ UserManagement
+ UserManagement
+ UserManagement InformationModel

Role Management

+ RoleManagement
+ RoleManagement
+ RoleManagement InformationModel

Access Management

+ AccessManagement
+ AccessManagement
+ AccessManagement InformationModel
+ Rationale

Audit

+ Auditing
+ Auditing
+ Audit Information Model

Public Key Infrastructure

+ Certi ficate
+ Certi ficateManagement
+ PKI
+ PKI InformationModel
+ Rationale

Secure Communication

+ SecureCommunication
+ SecureCommunicationManagement
+ Authentication Module (Access Control)
+ Client
+ PKI module
+ Server
+ iSecureCommunication
+ Test
+ SecureCommunication Information Model

Secure Storage

+ SecureStorage
+ SecureStorageManagement
+ Secure Storage Client
+ Security Module
+ Storage
+ iSecureStorage
+ SecureStorage Information Model

encryption

+ ServiceEncryption
+ Encryption

Token Management

+ TokenManagement
+ TokenManagement
+ TokenManagement Information Model

Figure 10: Security Services

5.2.5 Sensor Services
The whole variety of sensor services providing the functionality on the physical layer. This means all
the hardware is connected with the functionality of these services. For demonstration and for fulfilling
the use cases different hardware sensors and different sensor services has been implemented including
services for door control, for temperature control, for location control etc.

For providing an interoperable layer where different sensor from different providers can be connected
to the FSA (Frame Sensor Adapter) has been introduced.

The detailed information about the FSA and the sensor services can be found in the “D2.2 – sensor
service middleware design” deliverable.

 Page 26 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

class Sensor Serv ices

Dev ice Management

+ DeviceManagement
+ DoorControlManager
+ FlowMonitoring
+ DeviceOperation
+ DoorAccesManagement
+ DoorAlarmManagement
+ DoorBehaviorManagemet
+ DoorOpen
+ FlowAlarmManagement
+ Information Model
+ Rational

Location

+ LocationQuery
+ LocationUpdate
+ LocationNotification
+ LocationOperation
+ LocationQuery
+ LocationUpdate
+ InformationModel
+ Location

Monitoring

+ Condition
+ EnvironmentControl
+ PatientControl
+ EnvironmentOperations

TemperatureControl

+ Alarm
+ Behaviour
+ Identifier
+ IDNetwork
+ Manufacturer
+ Network
+ Relationship
+ TemperatureControl
+ TemperatureControl
+ iTemperatureSensorCfg
+ iTemperatureSensorMgmt
+ iTemperatureSensorNotification
+ iTemperatureSensorQuery
+ TemperatureSensor
+ InformationModel
+ Rationale
+ TemperatureControl

DoorManagement

+ :DoorControl
+ iDoorNotification
+ iDoorOperations
+ iDoorQuery
+ iDoorUpdate
+ Information_Model
+ Rational

Ov enManagement

+ OvenControl
+ OvenNotification
+ OvenOperations
+ OvenQuery
+ OvenUpdate
+ Information Model
+ rational

CameraManagement

+ CameraControl
+ CameraOperations
+ Information Model
+ Rational

PulseOximeterManagement

+ PulseOximeterControl
+ PulseOximeterQuery

FlowManagement

+ FlowControl
+ FlowNotification
+ FlowOperations
+ FlowQuery
+ FlowUpdate

Figure 11: Sensor Services

5.2.6 MPOWER components
MPOWER middleware offers a set of services providing functionality to develop applications
regarding care issues. The visible parts for application developer are services that can be used to create
aforementioned application. Those services are divided into the following groups: security services,
communication and interoperability services, medical and social information services, as also sensor
services. Moreover MPOWER offers other components that are not associated directly with any of
those groups of services. Most of the MPOWER services are accessible via web services.

What is called as “MPOWER component” is that part of MPOWER platform that is not offered as a
service but runs inside the platform carrying out different kinds of tasks important for combining other
parts of the platform and securing its proper usage. Some of these MPOWER components are: ESB
(Enterprise Service Bus) [5], Rules Engine [6], alarming, data bases and FSA [7]. There no exists a
direct use of these components by developers, but they can carry out important task to get well
performance of application. As they are not service offered by MPOWER platform, they are not
explained in service explanation document. However they need to be explained to developers for
knowing how they work and how the can be used. Hence, next section will describe the, because they
have not a document where are described, as service have.

Enterprise Service Bus

 Page 27 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Service-oriented architecture (SOA) needs an infrastructure that can connect any IT resource
regardless its technology and the place of its deployment. To be flexible it needs an infrastructure that
can easily combine and re-assemble services to meet changing requirements without disruption. To be
dependable it needs an infrastructure that is robust and secure. This infrastructure is the enterprise
service bus (ESB).

The word "bus" is a reference to the physical bus that carries bits between devices in a computer. The
enterprise service bus has an analogous function on a higher level of abstraction. Making use of an
ESB, an application can communicate via the bus which acts as a message broker between
applications. The primary advantage of such approach is that it reduces the number of point-to-point
connections required to allow applications communication. This makes analysis for major software
changes simpler and more straightforward. By reducing the number of points-of-contact to a particular
application the process of adapting a system to changes coming from one of its components becomes
easier.

The ESB is the piece of software that lies between the business applications and enables
communication among them. Ideally, the ESB should be able to replace all direct contact between
applications by passing it through the bus. In order to achieve this objective the bus must encapsulate
the functionality offered by its component applications in a meaningful way. This is typically
accomplished through the use of an enterprise message model. The message model defines a standard
set of messages that the ESB will both transmit and receive. When it receives a message, it routes it to
the appropriate application. Therefore the ESB is in charge of carrying out the internal communication
(between different components of the platform) and external communication (between the platform
and other applications).

Enterprise Service Bus

Application 1 Application 2 Component 1 Component 2

Figure 12: Enterprise Service Bus

Rules engine

The rules engine is software able to infer logical consequences from a set of asserted facts or axioms.
The inference rules are commonly specified by means of an ontology language and often a descriptive
language. Many rules engines use “first order predicate” logic. Inference commonly can be performed
in two ways: by forward chaining and backward chaining. Generally speaking, rules engine in the
MPOWER platform is an observer that is gathering all information travelling through ESB. When
some specific value or values match with some of the rules stored in the rules engine then a predefined
action is carried out as a result.

 Page 28 of 75

http://en.wikipedia.org/wiki/Bus_%28computing%29

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Rule

Engine

Enterprise Service Bus

Match

Action to be performed

Figure 13: Rule engine operation

Alarming

It is a service providing necessary logic of alarms treatment. It stores the necessary alarm’s
information and also passes a notification message to the applications which have to take appropriate
actions as a response. These actions are described by a business process specific for each situation.

Figure 14: Alarming service mechanism

Data bases

Data bases are needed to store necessary information within the MPOWER platform. Such
information includes e.g. installed devices, user’s data and preferences, etc.

Frame Sensor Adapter

FSA (Frame Sensor Adapter) is proposed by MPOWER as a Sensor/Actuator Network abstract
architecture model. It solves the problem of communication among services and different sensor
protocols.

FSA architecture defines a framework to access sensors and actuators through several communication
channels with the same interface. Regardless the information source and data format the information is
managed by the FSA is unified. The goal of the FSA model is to hide complexity and details inherent
to the sensor communication from the remaining system.

Alarming
service A call to alarming service

Notification Service Call

store important alarm data

Notification
Service

 Page 29 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

FSA

Sensor 1 Sensor 2 Sensor 3

Acces point

Figure 15: FSA architecture, with unified access

5.3 How to use a MPOWER service

5.3.1 Overview of the process
The procedure of application development foreseen using MPOWER is a traditional process of user
scenario evaluation - use case description - use case modelling – service modelling – service
description – application development. This process is illustrated in the figure below:

Technical work

Joint healthcare and technical workHealthcare work

Iteration start

User Workshop

Expert Interview

User
Questionnaire

Litterature Study

User Scenarios Specification

«WebService»
Reusable Services

UML UseCase Modelling

ActorModel

ServiceModel

Model Transformation

Iteration
end

Application developmentApplication
Evaluation

Application

Evaluation report

UseCase Model

Service Specification

use patterns
«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

«trace»

«flow»

«flow»

«trace»

«trace»

«trace»

service descriptions

«flow»

WSDL

«flow»

cre ate

«flow»

eval uate

«flow»

«trace»

«flow»

«flow»

«flow»

«flow»

«trace»

Figure 16: Methodology of service and application development

 Page 30 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

In this process the MPOWER middleware provides several services in the service model which are the
basis to perform the application development. Therefore it is important to know all the services
available and their description.

The figure below shows how the application can provide and use services. Every service has its
specified input and output parameters. The “use” – relation describes the coherences between the
applications. The signature of the services is based on the parameters which have explicit data types.

Figure 17: Detail of an example UML profile

5.3.2 Access MPOWER Information services
Under the general information services set we can group the management services, communication
services and security services, as well as information services that do not have to deal with HL7
messages and sensor services at the services layer.

The Services layer (from Figure 2: MPOWER Reference Architecture, section 3.3) includes the
services the business chooses to expose. They can be discovered or be statically bound and then
invoked, or possibly choreographed into a composite (business) service. The underlying service
components provide service realization using the functionality provided by their interfaces which get
exported out as service descriptions in this layer for use.

The Business Process Layer includes compositions and choreographies of services exposed by the
Service Layer. The Services are bundled into a flow through orchestration or choreography, and thus
act together as a single application. These applications support specific use cases and business
processes, and are to a certain degree application specific.

The Proof-of-concept Applications (application layer) need to provide a user interface that uses the
underlying (business) services. It is important to note that SOA decouples the user interface from the

 Page 31 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

components. Applications can call simple services at the services layer or choose to create more
complex business processes.

The services at the services layer can be called in two ways. The first way is to use a service directly
by creating a web service client that calls the service using the service’s URL, the URL of a directory
to which this web service's WSDL and any dependent files are published during deployment [11].
However one main part of the SOA paradigm besides the service provider and service consumer
paradigm is to achieve loose coupling through the service broker and a service registry. So the other
way to invoke a service is to use a service registry/broker system. The service provider creates a web
service and possibly publishes its interface and access information to the service registry which is
responsible for making the web service interface and implementation access information available to
any potential service requestor. The Universal Description Discovery and Integration (UDDI)
specification defines a way to publish and discover information about web services. The service
requestor or web service client locates entries in the broker registry using a service discovery
component (which uses various find operations) and then invokes the requested web service. The
UDDI registry is explained in detail in the deliverable “D4.2 – the interoperability middleware
design”.

5.3.3 Access MPOWER Physical level services
The MPOWER platform serves to manage information coming from many different sensors mounted
in the place of its installation (smart house residence). This information is very important, because it
constantly feeds the MPOWER knowledge base regarding: important healthcare variables (such as
heart rate, oxygen saturation, etc.) of the patient, environment state (temperature, doors and windows
status, humidity, etc.), alarm situations (pressed panic button, location of a patient in case of getting
lost, etc.) and more information to be taken into account. One problem of managing of such a number
of sensors/devices and their returning values is that each sensor/device behaves in a different manner.
By the sensor behaviour is here understood its usage through its communication protocol, data format
used for exchanging messages, etc. That is why it is not possible to handle all of them the same way.
This situation can bring a lot of problems at the time of adding new sensors. When a new sensor is
added, if there is no other equals, developer must spend time learning the new sensor/device’s
behaviour which main consequence is the increment of implementation time.

Given these challenges, MPOWER provides support for these processes. We have created a solution
that offers one single way of access to several kinds of sensors working under the MPOWER platform.
The option adopted is to create a middleware, that we have denoted Framework Sensor Adapter
(FSA), which is able to interoperate with several kinds of sensors and make them accessible in a
standardised way. Developer only needs to have knowledge of how to communicate with middleware
and not of how to communicate with all types of sensors/devices.

The main idea of the FSA is to offer a MPOWER service for each kind of sensor/device. MPOWER
services are designed to talk to sensors/devices using the standardised protocol that the FSA defines. It
is possible to offer the direct access to FSA, but it is more intuitive to use a service with a name related
with sensor/device. It means that it is easier to remember that for consulting a door status there is a
service called “DoorStatus” than one coming from FSA internal naming. For more details on the FSA,
see the “D2.2” [7].

 Page 32 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Services
to access
to sensors

FSA

Sensor 1 Sensor 2 Sensor 3

Queries to
sensors/devices

Figure 18: MPOWER services for querying sensor

MPOWER services are published as web services, so the sensors/devices returning values are
accessible via SOAP requests. The platform offers a set of web services to access all different
sensors/devices that can be found at the MPOWER platform deployment location. MPOWER services
readily available within the platform are described below.

DoorControl service
Service designed for doors controlling. This service is able to ask for door status and to carry out
actions against a door, such as open a door. It enables to developer to have knowledge of current
situation of doors status (opened or closed), to get records of all movement of all doors and control
door status.

TemperatureControl service
Service for temperature control in the “smart house”. Through this service one can get the information
of temperature which comes from a particular temperature sensor and take an action to modify
temperature. It enables to developer to have knowledge of current temperatures within different
rooms, to get records of all temperatures of all rooms and control temperature in each room.

CameraAccess service
Service for getting a visual contact with a place of house via means of an IP camera. Thanks to IP
cameras located in different places of the home, user gets current visual information of what is
happening inside the home. It enables to developer to get image from a camera and show inside of a
room.

5.3.4 Accessing HL7 services

5.3.4.1 The Reference Information Model

HL7 is used inside the middleware to handle all the medical information data of the person of care.
HL7 provides a whole standardized communication and information model. This is the precondition to

 Page 33 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

provide this medical relevant data to outside legacy systems and provide a standardized interface and
communication model. Information of HL7 is available on www.HL7.org.

[12]. The RIM can be found in reference

For a given healthcare domain, an HL7 version 3 specification is based on the Reference Information
Model (RIM), a common and underlying modelling framework, and includes artefacts like: Use Case
Models, Information Models, Interaction Models, Message Models, and Implementable Message
Specifications.

HL7's RIM is a static model of healthcare information representing the aspects of the healthcare
domain undertaken so far by HL7 standards development activities. The HL7 version 3 standard
development process defines the rules used to derive domain-specific information models from the
RIM and to refine these models into HL7 message specifications, finally generating XML schema
definitions (XSD) associated with a particular Message Type.

Various tools are provided to the standards developer by HL7 to support that process. For example, the
RIM content itself is stored in a custom repository, and it's available to standards and application
developers who want to access modelling information and/or create additional tools.

MPOWER uses the RIM model for implementing a whole communication and information model for
medical data messaging. The overall process of defining information models that are relevant for
implementing advanced homecare services is presented on the Error! Reference source not found..
It is worth mentioning that this process uses “top-down” approach which means that it starts from
business requirements and process definitions and refines them in a stepwise fashion down to a
software implementation. This process is compliant with SOA4HL7 methodology and with MPOWER
modelling methodology that is used through the whole project lifecycle.

More information about the service modelling of HL7 services can be found in the deliverable “D3.1 –
Medical and Social Middleware Design”.

 Page 34 of 75

http://www.hl7.org/

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 19: Medical and social information modelling process

5.3.4.2 The Message Structure

Interactions among HL7 applications happen through message exchanges. Thus, the standard
provides a substantial level of functionality in provisioning envelopes supporting message
exchange between applications. HL7 message envelopes are called wrappers, initially
modelled by defining classes and relationships in the RIM. These specifications are then used
to create the XML schema for the message wrappers, following a process outlined in HL7
Message Development Framework depicted on Figure 20 .

 Page 35 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 20: HL7 Message Development Framework

All HL7 messages are embedded into a Transmission Wrapper, whose goal is to support the
Transmission (and Acknowledgement) of messages among applications. Important parts of the
wrapper are elements like: Message Identifier, Message Creation Time, Interaction Identifier, Sender
and Receiver Applications Identifiers, Accept Acknowledge Code, and Message Sequence Numbers
(optional). It's important to clarify that HL7 messages should be thought of as being exchanged among
Logical HL7 Applications; that is, specific software applications or components (like "Order Entry")
that act on behalf of organizational or administrative entities (like "Westside Hospital Registration").
So, Sender and Receiver concepts should not be seen as part of a specification at the Transport level.

For example, the Accept Acknowledge Code specifies if an Application Level Acknowledgement
should be returned to the application that sent a message, or if a more Transport-oriented receipt
(called Accept Acknowledge) is required.

Sender applications use the Control Act Wrapper to communicate receiving information about the
event that triggered the exchanged message. Unlike the Transmission Wrapper, the Control Act
Wrapper's structure (schema) depends on the particular Interaction and Message Type. Not
surprisingly, Control Act Wrappers are required for every message but Accept Acknowledge ones.

Transmission and Control Act Wrappers are used as envelopes for the Message Body (see Figure 21).

Together, the Control Act Wrapper and the HL7 Message Body constitute the complete semantics of
HL7 Messages.

Inside the MPOWER middleware the HL7 messages wrap their content like explained above. Its clear
that in the way of the design form the RIM only services designed in the process can exchange Hl7
messages. Nevertheless some services provide an interface where the information in the HL7 context
can be retrieved in the HL7 structure. For more information see the deliverable D3.1.

 Page 36 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 21: HL7 Abstract Message Structure

5.3.4.3 HL7 V3 Web Service Profile

The current HL7 V3 Web Service Profile specifies how to wrap full HL7 Composite Messages
(including control act transmission wrappers) in SOAP and gives rules for certain aspects of the
WSDL. Presented layers fulfil the purpose of providing a consistent way of transporting HL7
messages over SOAP and XML, and also define certain rules for defining consistent WSDL files (see
Figure 22).

Figure 22: HL7 V3 WS Profile Layers

This approach has the advantage that from a HL7 perspective it uses the same construct as other
“transports” and it makes transporting HL7 messages across multiple protocols simpler.

However, it does create any challenges:

• It is based on a messaging perspective rather than a SOA perspective and may limit the
resulting benefits

• Web Services are treated as more of a simple transport mechanism based around a messaging
paradigm.

HL7 messages within a SOA framework may be handled differently from other content types using a
content specific infrastructure, resulting in inconsistencies, potentially less flexibility and slower and
more costly development.

Inclusion of explicit Transmission layer adds unnecessary complexity and message bulk

 Page 37 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Explicit dependencies and/or overlap between HL7 and WebService standards may create a continual
synchronization challenge between the different standards.

5.3.4.4 MPOWER HL7 services

MPOWER has a set of services that support the HL7 standard. For demonstration two information
models have been used to develop middleware services.

Medical and social information models have been developed based on the HL7 RIM and in most of
the cases constrain/extend/annotate already HL7v3 information models to support the needs of patient
and professional caregivers. HL7 will be used as a basis to further develop models in the area of
advanced homecare.

Medication management service

The requirement for medication management functionalities came from the interviews with patients
suffering of cognitively disabilities and nurses that treat them. The interfaces and operations for the
service are detected and selected from the HL7 services ballot [8]. Finally, the message contents are
generated using HL7 tooling.

The Medication management service deals with the description of messages medicines for the
purposes of messaging information about patient medication list. Operations of Medication
management service range from basic functionalities for managing medication list to operations for
fetching medical information from the database. The operations of the Medication management
service are:

addDrugForPatient – adds new drug to a patient’s medicine list,

deleteDrugForPatient – deletes drug from a patient’s medicine list,

retrieveDrugList – retrieves drug list for requested patient, and

retrieveDrugInfo – retrieves detailed information about medication (description, package type, using
guidelines etc.).

More documentation on this service can be found in the deliverable D3.1.

Calendar management service

The requirement for calendar management functionalities came through the interviews with families of
elderly that needed a way to organize everyday tasks of their loved ones. The selection of appropriate
HL7 services and operations, and generations of messages is done equivalently as with the Medication
management service. The Calendar management services enable communication of events related to
the scheduling of appointments for healthcare services and scheduling of different social activities.
The scheduling system maintains a set of schedules related to certain person or resource, managing the
process of arranging and booking appointments. The operations of Calendar management services are:

- bookActivity – writes new activity into a user’s schedule,
- cancelActivity – deletes activity from a user’s schedule,
- retrieveExistingActivities – retrieves the list of existing activities from a requested user’s

schedule, and
- retrieveActivityInfo – retrieves detailed information about activity.

 Page 38 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

More documentation on this service can be found at the D3.1 deliverable for a general HL7 service
implementation process based on RIM models and the modelling example for the medical
management service and the calendar management service.

5.4 Example development process using a scenario

5.4.1 Basic scenario
Rosa lives alone in a small house in a village. She was diagnosed Alzheimer’s disease 3 years ago and
she is aware about the decline of her cognitive abilities. Some neighbours support Rosa with activities
and she is more or less included in the social life. Every two weeks Rosa has to see the doctor to check
her health condition. Due to the fact that medications she is using (number and sort of pills when they
should be taken) are often changed, during the meeting the doctor gives Rosa a lot of additional
information about what she should take care of (e.g. avoid some edibles, which side effect some of the
pills have etc.).

In this basic scenario, the POCA system maintains the list of medications that are prescribed to Rosa.
Rosa can at any time access the system and get specific information about medications that she is
currently prescribed to. This additional information are entered by doctor and can contain various data
related to the medication use. Furthermore, POCA maintains a scheduling system that maintains the
schedule when Rosa needs to take the medication. The POCA system can initiate a reminder for Rosa
to take the medication at appropriate time.

5.4.2 Upgraded scenario
In the upgraded scenario, Rosa’s condition has worsened, and Rosa sometimes forgets to take her
medications even though she receives reminders from POCA system. Thus, POCA needs to be
accommodated to this change.

5.4.3 Realization of basic scenario through business process
The basic scenario can be implemented using business process that coordinates the Medication
management and Calendar management services as presented in Figure 18.

Figure 23: Business process for prescribing medication to a patient

 Page 39 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

The doctor uses Doctor interface to enter medications into Rosa’s medication list. The Doctor
interface uses business process to submit a medication to Rosa’s list of medications. While submitting
the medications the business process not only inserts the medication into Rosa’s medication list using
the Medication management service, but also makes a call to Calendar services where it schedules
activities for Rosa. The scheduled activities contain reminders that will remind the Rosa when she
needs to take the medication. Similarly, Rosa has user interfaces that she uses to access the systems
services. The interfaces need not access the systems’ services through business processes. For
instance, interface for Rosa can access MPOWER services directly and display the list of medications
prescribed to Rosa.

5.4.4 Adaption of scenario through business process
After Rosa’s condition has worsened the POCA logic needs to be modified to accommodate to
additional functionality that is required from the system. For instance, the system may be adopted in a
way that Rosa is assigned a caregiver that is willing to help her to take the medications. The caregiver
need to be updated of any modifications to Rosa’s list of medications or schedules.

The upgraded business process coordinates three services. New service that business process uses is
Message sending service from Interoperability services package. The Message sending service
cooperates with telecom provider and enables sending SMS messages. When a new medication is
prescribed through the new business process, the process not only adds medication to the list of
medications and schedules a reminder, but also sends an SMS to the caregiver notifying him of the
modifications to Rosa’s medication plan.

Figure 24: Adapted business process for prescribing medication to a patient

5.5 Step by Step guide for creating a small application
In this chapter we will demonstrate how developers can create an application and calling a web service
from the MPOWER platform. In the specific example we will use Netbeans, the application will be a
web application and the web service that will be invoked it will be the authentication service.

The prerequisite for this task is to know the wsdl of the web service. In our case the wsdl of the
authentication service is:

 Page 40 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

http://mpower2.arcsmed.at:8080/sec.access_control/AuthenticationWServiceService?WSDL.

First of all, we should create our application, if it’s not already exists. We open our IDE and select the
create a New Project menu. In Netbeans it can be located on the upper left side of the IDE (Figure 25)

Figure 25: Create a new project

Then we select the type of the application. In our case we select the web application (Figure 26). Then
we have a window to insert the application details (Figure 27). Mandatory fields are the Project name.
All other fields are automatically inserted, but we have the option to alter them. By pressing the Finish
button we have the IDE main screen and the new project opened and waiting for our code (Figure 28).

Figure 26: Select Application type

 Page 41 of 75

http://mpower2.arcsmed.at:8080/sec.access_control/AuthenticationWServiceService?WSDL

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 27: Complete the Application details

Figure 28: Ready to begin the Application development

The developer now creates the pages and inserts the code that desires. After few lines of code, we
assume that we need to use a web service from the MPOWER platform. In order to do so, the
developer has to create a web service client (Figure 29). When selecting the option to create a web
service client, a window appears for the user to enter the web service details (Figure 30).

 Page 42 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 29: Create a web service client

Figure 30: Inserting details for the web service

After the insertion of the web service client, the developer has to call the web service in order to use
the MPOWER platform. We can easily do this by expanding the service and locating the desired
procedure of the service and just drag and drop into the code into the right place (Figure 31). Then a
ready code is inserted into our code (Figure 32). The developer is now ready to alter the code as he
sees fit in order to succeed his goals.

 Page 43 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 31: Inserting the service

 Page 44 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 32: Auto code from the IDE

5.6 Creating and using a business component in BPEL

Business processes are modelled with the Netbeans environment using SOA projects category. The
detailed tutorial on how to create a simple business process in Business Process Execution Language
(BPEL) can be found here: http://www.netbeans.org/kb/61/soa/bpel-guide.html

 Page 45 of 75

http://www.netbeans.org/kb/61/soa/bpel-guide.html

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

6 Service Developer’s guide to MPOWER
This chapter describes how a developer can create services which fulfil the requirements for extending
or being interoperable with the MPOWER platform. The chapter describes the MPOWER service
development methodology, and presents the tool-chain recommended for developing MPOWER
services. The last sub-chapter presents step-for-step instructions for the design and implementation of
an example service.

6.1 How to create a service

6.1.1 What is an MPOWER service?
From the developer’s viewpoint an MPOWER service is a standard web service based on SOAP
messages and WSDL descriptions, and with some additional rules to follow:

- Services must follow the WS-I Basic Profile

- SOAP binding must apply the document style (not RPC)

- Services must use the MPOWER security mechanisms

- All services operations must use the MPOWER status return codes

When developing services in the MPOWER context, we can separate between two scenarios which
differ in e.g. rationale, requirements, and usage. These scenarios are described below. Note that the
general rules for developing MPOWER services described above apply to both scenarios. Also, the
methodology for developing MPOWER services described in the further sections of this chapter is
applicable in both scenarios.

Developing services which will become part of the MPOWER platform:

- Rationale: To become part of the MPOWER platform, the service should be generally
reusable in different applications of the domain. Thus, care should be taken when designing
the service to consider a set of different usage scenarios, avoiding to tailored the service for
use only from a single application.

- Deployment: A service which will become part of the MPOWER platform should be
deployable together with the rest of the MPOWER platform, avoiding the need of additional
application servers for the platform.

- Shared database: The services which are part of the MPOWER platform share a single
database, and thus new services which will become part of the platform should be developed
to use this shared database in order to avoid the need of multiple databases for the platform.

- Technology: To be deployable with the MPOWER platform, the service should be developed
in Java so that it can to use same application server as the rest of the middleware.

- Namespaces: MPOWER defines a namespace scheme to apply for the services which are part
of the platform.

- Logging: Services which are part of the MPOWER platform should follow the standard
MPOWER approach to logging.

Developing more independent services based on, or interoperable with MPOWER

- Rationale: Not all services should become part of the MPOWER platform. When developing
services that have limited reusability, e.g. because it is more or less application specific, in
order to keep the platform focused and manageable in size the service should not become part
of the platform. Another reason for not adding a service to the platform (even though it is

 Page 46 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

reusable), could be that the service is developed as part of a separate product with different
licensing terms than the MPOWER platform.

- Used together with MPOWER services: The independent services will typically be used in
combination with services in the MPOWER platform to create applications extending the
scope of the services provided directly by the MPOWER platform.

- Deployment: For independent services, it is not a requirement that the service is deployable
together with the MPOWER platform. In this case, the service could be deployed
independently of MPOWER using another node, another application server, and another
database. Also for independent services, it could still be a benefit to have the service
deployable with the platform, in which case the requirements for the first scenario should be
fulfilled.

- Technology: Independent services can be developed in any technology for Web-service
development (e.g. .NET), but note that the MPOWER tool support is only provided for the
MPOWER-recommended technologies (Java-based).

6.1.2 Overview of the MPOWER service development methodology
The previous subsection described what is required of a service in order to fulfil the requirements for
being an MPOWER service. In this sub-section we provide and overview of the methodology for
developing MPOWER services. The methodology described in this and the following sub-sections is
independent of specific tools, but assumes the use of UML as the modelling tool. The model examples
provided in the chapter was made using the MPOWER UML profile in the Enterprise Architect tool,
but should be possible to reproduce using other tools.

Figure 33 presents an overview of the process that was followed when developing the services which
are predefined in the MPOWER middleware. When developing new MPOWER services, we
recommend that you use this process as a starting point, but also that you tailor it to your own needs.
For instance, you may decide to use a user workshop as the only input to specifying user scenarios for
your service (e.g. because of resource and time constraints). Below the process is described in more
detail.

 Page 47 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

BPMN WorkProcess

Service Implementation

Service Specification

Requirements specification

Feature
model

Scenarios
Use case

model

Identify and
describe services

Specify operations

Specify messages

Service Model

Generate WSDL

Implement Web
Service

«WebService»
MPOWER Web Service

«xml»
WSDL File

Develop user
requirements

Start specification

End specification

Specify Interfaces

«flow»

«flow»

«flow»

«flow»

use

«flow»

«flow»

import WSDL
«use»

«flow»

«flow»

«flow»

Figure 33: Service specification process

In order to initiate work to create new services we need new requirements from the end users. These
requirements are developed using scenarios, use cases and features. A scenario is a story that first
describes the problem and then describes possible solutions. Therefore these scenarios represent the
basis for the development of the use case and feature models. User workshops, expert interviews, user
questionnaires and literature studies may be applied to come up with a good set of scenario
specifications. Figure 34 shows the requirements development approach applied in the MPOWER
project.

The user scenarios will be modelled in UML use cases, which map to specific scenarios of use and
help capture the functional requirements of the system (or features as we denote it in MPOWER). Use
cases describe the typical interactions between the users of a system and the system itself, providing a
narrative of how a system is used. If new actors are involved we will need to update the actor model as
well. So from the user scenarios and the use cases we can extract the features (non functional and
functional). The functional features are specific requirements for services to be implemented but are
not detailed specifications. The features can be grouped and prioritized.

Using the user requirements (mainly the feature model) as input, service candidates are identified and
described. After we decide the services that will be implemented we need to specify the service
interface along with operations and messages for each of the services in a UML class model (service
model).

Based on the service interfaces, the developer can now create WSDL for the services. With the proper
tool support (e.g. Enterprise Architect), this can be done (semi)-automatically by applying

 Page 48 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

transformations to the UML service model. The WSDL definition of the service is then used as basis
for creating the implementation of the web service, and the development environment (e.g. Netbeans)
will typically generate proxy classes and skeletal implementations of the service interface in which the
developer will fill in their code.

When we finish with the implementation and build the service, the development environment typically
produces a deployable file (e.g. WAR file for Java) that contains all the class files. This file can then
be deployed on an application server to make the service available for use in applications and other
services.

class WorkProcess

Related work

Result

Project
description

Workshop with
target groups

Questionnaires
to experts

Cyclic development

Use case
model

Scenarios

Feature
model

Previous
and

ongoing
projects

Trial sites
characteristics

«flow»

«flow»

User needs

«flow»

«flow»

«flow»

«flow»

«document» result

«flow»

«flow»

«flow»

Figure 34: The MPOWER User requirements development approach

6.1.3 MDA approach
To address the information system interoperability problems, new techniques and methodologies have
been introduced in the Software Engineering community. One of these is the Model Driven
Development, or more precisely Model Driven Software Development (MDSD). The goals of MDSD
described in [9] can be summarized as follows:

• Increase development speed and software quality through automation
• Higher level of reusability as the architectures, modelling languages and transformations are

generic for the domain (abstract)
• Improved manageability of complexity through abstraction
• MDSD is based on the Object Management Group’s Model Driven Architecture ® (MDA).

OMG’s focus in on interoperability, portability and reusability through architectural separation of
concerns

 Page 49 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

The development of the MPOWER middleware platform follows the model-driven approach as
defined by the Model Driven Architecture from OMG [10]. MDA specifies three views of model
development:

• Computation Independent Model (CIM): the domain (business) activities are modelled
independent of the information system to be developed

• Platform Independent Model (PIM): the information system behaviour and structure is modelled,
based on the CIM, independent on the technological platform and tools that will realise it

• Platform Specific Models (PSM): the system is modelled in UML with technology-details about
the realization. From PSM the major parts of the system code can be generated.

In the following, the method for MPOWER middleware platform development method is presented in
terms of these three views.

6.1.4 Capturing domain knowledge: User needs – scenarios, use cases and features
As described in the overview of the methodology, the recommended approach for developing services
based on MPOWER starts with capturing the user needs and business aspects (the CIM) resulting in a
set of scenarios. A scenario is a hypothetical story, used to help a person think through a complex
problem or system. The scenarios are written in natural language, and describe different situations in
which the user will interact with the system. It can be useful to use two different kinds of scenarios:
first a problem scenario which describe the current practice, and then an activity scenario where an
improvement to the current practice is suggested by introducing use of a new system or service.

Based on the scenarios, a set of UML use cases are described next. In this process activities and actors
involved in the scenarios are identified, and these constitute the content of the UML use case. Each
scenario can result in one or more use cases, but in some cases a use case may also be based on more
than one scenario. Figure 35 shows the “Stakeholder management” use case and how it is related to
actors and other use cases.

uc Management

Introduce HomeCare
System

HealthCareProfessional

(from Stakeholder - HealthcareProfessional)
Subject Of Care

(from Stakeholders - Other)

HomeCare System

(from System - Health Information System)

Introduce education
system

Indiv idual Plan

(from System - Health Information System)

Install Homecare
system with VTC

Stakeholder
management

Configure homecare
system

HealthCare Organization

(from Stakeholder - Organization)

demonstrate education service

+GP or GP assistant

responsible for introduction

get information

+User of the system

get information

get information about education system

Figure 35: Use case example from MPOWER Management scenarios

It is strongly recommended to document the relations for how use cases are derived from scenarios.
This allows traceability both for determining the origins of the use cases, and for checking how the
scenarios are followed up in the use cases. Figure 36 depicts how the traceability to the scenarios from
which the use case is derived can be described using the Enterprise Architect tool.

 Page 50 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 36: Traceability from use case back to scenarios

From the use cases and scenarios features are described and grouped into categories. Each feature
should be directly related to one or more use cases as shown in Figure 37. In this example, the
stakeholder management use case is related to four features.

custom Stakeholder management

add stakeholder
(stakeholder may
have user rights
to the system)

define relations
between
stakeholders

edit stakeholder
(including role)

enable/disable
stakeholder

(from Individual Plan)

Add plan element

(from Management)

Stakeholder
management

«trace» «trace»

«trace»«trace»

«trace»«trace»

«trace»«trace»

Figure 37: Features and their relations to use cases

Further description of the how scenarios, use cases and features were applied in the development of
the predefined services of the MPOWER middleware can be found in the deliverable MPOWER D7.1,
“Scenarios and needs”. Also, in the annexes to this deliverable examples of scenarios and use cases
can be found.

6.1.5 Service Specification – the Platform Independent Models

The features and use cases are used as input for defining the services. As an initial approach, related
features can be grouped to form a service. The relation between features and services should be

 Page 51 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

documented in a UML diagram similar to Figure 38. This diagram shows will show the rationale
behind the service, and provide traceability back to the features.

 class Rationale

add stakeholder
(stakeholder may
have user rights
to the system)

(from Stakeholder management)

define relations
between
stakeholders

(from Stakeholder management)

edit stakeholder
(including role)

(from Stakeholder management)

enable/disable
stakeholder

(from Stakeholder management)«ServiceProvider»
ActorManagement::

ActorControl

Figure 38: Service rationale

For the further development of the service specification, we recommend to follow the process
described in Figure 39. As described above, grouping the features will be the main approach to
identifying services.

Service definitions can include one or more interfaces. In general, different interaction styles can be
split into different interfaces e.g. Query (read-only) vs. Manage vs. Notification (subscription based).
In case there is only one interface it can be called the same as a service. The features will also give
some input to the process of defining the interfaces and their operations. Experience from the
development of the MPOWER services indicate that the tools support works best if there is only one
interface for each service.

The service definitions are described using UML class diagrams. As shown in Figure 40, the service is
defined by a UML class representing the service provider, a UML interface describing each interface
and its operations, and with the interface associated with a port of the service provider.

The right-hand part of Figure 39 describes additional activities in the service definition process which
should be used when defining HL7-based services. Further details on this process and HL7-specific
issues can be found in MPOWER D3.1: Medical and Social Middleware Design.

 Page 52 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 39: Medical and social information modelling process

 class ActorManagement

«ServiceProvider»
ActorControl

ActorManagement

«ServiceSpecification»
ActorManagementInterface::iActorManagement

+ addActor(HumanResourceEventCreate) : boolean
+ disableActor(SuspendHumanResource) : boolean
+ enableActor(ActivateHumanResource) : boolean
+ getActor(Message) : HL7Actor
+ removeActor(TerminateHumanResource) : boolean

Figure 40: The Service Model with UML Stereotypes

6.2 Using the service developer toolchain
This chapter describes how you can use the MPOWER developer toolchain to develop MPOWER
services. The first sub-section gives an overview of the MPOWER toolchain. It is followed by sub-
sections describing details specific to the development of information related services, physical level
services, and services using HL7.

 Page 53 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

6.2.1 MPOWER toolchain overview
Using the MPOWER toolchain is the recommended way of developing MPOWER services, as it was
constructed to support the development methodology and increase the productivity of the developer.
The current implementation of the toolchain is built around the following tools:

• Enterprise Architect for UML modelling and transformations
• Netbeans for Java development
• soapUI plugin for Netbeans for testing of messages
• Glassfish Application Server for deployment of services

To set up a development environment with the toolchain, please follow the installation instruction
provided in Chapter 4.

Figure 41 shows an overview of the MPOWER toolchain, including the tools and the most important
artefacts involved in the service specification, implementation and deployment process. The Enterprise
Architect tool is used to model the services in a UML class model, based on the description of the user
scenarios and use-case models. From the UML model of the services, we generate a WSDL model in
Enterprise Architect. The WSDL model is further transformed to a WSDL file, which is used as input
for the service implementation.

From Netbeans, the WSDL file is imported and is used to generate the web service files that are
needed for the implementation of the web service. When the developer has completed the
implementation Netbeans is used to build the service and get the WAR file that contains all the class
files. This WAR file can be deployed on an application server to make the service available for testing
and for use by other services and applications.

 Page 54 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

class Toolchain

SUN Application Server 9.0NetBeans 6.0 with soapUI

Sparx Enterprise Architect

WSDL File

WAR with class files

Model
Service in

UML
MPOWER

UML Service
Model

Generate
WSDL

SOAP
Request and

Response

Generate
Web Service

files

«UMLProfile»
IBM System
Services UML
Profile

Generate
SOAP Test
Messages

«Technique»
Model
Transformation

Test Web
Service

HL7 v3
Messages

User
Scenarios
and Needs

SOAP Request

«flow»

«WorkProduct»

«WorkProduct»

«Document»

«WorkProduct»

«flow»

«flow»

«flow»

«WorkProduct»

«flow»

«flow»

SOAP
Response«flow»

Figure 41: Toolchain

6.2.2 Information related service
This section explains the principles of how to use the MPOWER toolchain, including which models
and information that is required for the model transformations to work. Please not that section 6.3
provides further screen-shots and explanations which especially may be useful when going through the
process the first time.

6.2.2.1 Modelling using Enterprise Architect

The recommended modelling methodology for MPOWER service development was introduced in
section 6.1. This section focuses on details of how to apply the IBM SOA UML Profile using the
Enterprise Architect tool, and on how to create the models required when using the MDA features of
the MPOWER toolchain.

As described in section 6.1.4, the recommended process when developing MPOWER services is start
with modelling of use cases and features based on user scenarios. This process uses regular UML
diagrams and stereotypes, and the only tool-specific issue here is the support provided by Enterprise

 Page 55 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Architect for specifying the traceability from use cases back to the scenario descriptions. It is
illustrated on Figure 42. A use case can be derived from more than one scenario.

Figure 42: Traceability from use case back to scenario

For the service specification part of the modelling, the following set of stereotypes from the IBM SOA
UML Profile should be applied:

• <<ServiceProvider>>

• <<Service>>

• <<ServiceSpecification>>

The use of these stereotypes is illustrated in Figure 43. The ActorControl applies the
<<ServiceProvider>> stereotype to the UML Class. ActorControl provides the ActorManagement
service, shown as a UML Port applying the <<Service>> stereotype. The ActorManagement service
realizes the IActorManagement service specification, which is defined using a UML interface with the
<<ServiceSpecification>> stereotype. The operations on the interface reflects the features that the
service implements.

 class ActorManagement

«ServiceProvider»
ActorControl

ActorManagement

«ServiceSpecification»
ActorManagementInterface::iActorManagement

+ addActor(HumanResourceEventCreate) : boolean
+ disableActor(SuspendHumanResource) : boolean
+ enableActor(ActivateHumanResource) : boolean
+ getActor(Message) : HL7Actor
+ removeActor(TerminateHumanResource) : boolean

Figure 43: The Service Model with UML Stereotypes

 Page 56 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

6.2.2.2 Transforming to WSDL Model and further to WSDL

In the MPOWER MDD approach, the service model is the primary model which the toolchain will use
to generate parts of the service implementation. EA supports transformation of UML class models to
WSDL models. The default transformation builds elements for WSDL components, services (ports),
bindings, and port-types. The MPOWER toolchain contains a customized version of this
transformation which generates more information in the WSDL model than the regular WSDL
transformation. See section 4.1.2.1 for install instructions.

To generate a WSDL model from the service description model in Enterprise Architect, select the
package containing the service model in the project browser, and use the “Transform Current
Package” action from the right-button menu. From the dialog that appears, select “include child
packages” and press the “do transform” button to start. This transformation will generate a new WSDL
model in the Enterprise Architect project, which is organized based on WSDL concepts and using
WSDL specific stereotypes. Figure 44 shows an example of how the structure of the WSDL model
will appear in the project browser. To visualize the complete service structure you may want to add the
elements in Bindings, PortTypes and Services into the root-diagram of the WSDL model by dragging
the elements into the diagram, producing a diagram similar to Figure 45, but this visualization is not
required for tool purposes.

Figure 44: WSDL model structure

class ActorManagement

«WSDL»
ActorManagement

ActorManagementInterface

«WSDLbinding»
Bindings::iActorManagement

+ addActor(addActorRequest, addActorResponse*)
+ disableActor(disableActorRequest, disableActorResponse*)
+ enableActor(enableActorRequest, enableActorResponse*)
+ getActor(getActorRequest, getActorResponse*)
+ removeActor(removeActorRequest, removeActorResponse*)

«WSDLportType»
PortTypes::iActorManagement

+ addActor(addActorRequest, addActorResponse*)
+ disableActor(disableActorRequest, disableActorResponse*)
+ enableActor(enableActorRequest, enableActorResponse*)
+ getActor(getActorRequest, getActorResponse*)
+ removeActor(removeActorRequest, removeActorResponse*)

«WSDLservice»
Services::ActorManagementInterface

iActorManagement

Figure 45: From generated WSDL model with port type and binding to service

 Page 57 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

The WSDL model resulting from the transformation is almost complete, but before WSDL code
generation can be performed the target folder for the generated WSDL file must be set. This is done by
setting the file name property from the properties dialog for the main component of the generated
service, which is stereotyped as <<WSDL>> in the WSDL model.

To generate the WSDL file, select the main component, and choose “Generate WSDL” from the right-
button menu. From the Generate WSDL dialogue which appears, select “Generate”. The result is the
WSDL code generation with the WSDL file being stored to the target folder selected earlier.

Note that once a WSDL model has been generated, later transformations from service to WSDL model
will update the existing model attempting to maintain any manual changes which has previously been
done to the WSDL model. In general this functionality is useful, and e.g. the file name property only
has to be entered once. However, if problems are experienced with the results of the transformation, a
last resort can be to delete the WSDL model so that it is generated from scratch from the service
model. Any previous editing such as setting the output file name or creating diagrams presentation
purposes will in this case have to be repeated manually.

6.2.2.3 Importing WSDL and completing the code in Netbeans

The WSDL file is a central artefact in the development of web services as it provides a definition of
the interface for the service. WSDL-files can be used in most tools supporting web-service
development, both when creating an implementation of the service and when using the service from an
application or from another service.

In Netbeans, which is the recommended Java IDE in the MPOWER toolchain, the WSDL file is
imported, and from this Netbeans will generate server stub code, the web service files that are needed
for the implementation of the web service, using the JAXB and the JAX-WS specifications. When
starting the service implementation from Netbeans, first create a new “Web Application” project
which is found in the “Web” category from the new project dialog. To add a web service based on the
generated WSDL to this project, select the web application project in the project browser, and choose
“Web service from WSDL” under “New…” from the right button menu. From the dialog that appears,
selected the generated WSDL file, and fill in the rest of the information requested. Netbeans will
generate a skeleton implementation for the service interface in the WSDL, and will present a view of
the service similar to Figure 46.

 Page 58 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 46: Generating web service

The skeletal implementation of the service is a Java class with web service annotations. To view the
Java source code, select “Source” instead of “Design” in the top left corner of the editor. The
generated Java class will contain a method skeleton for each of the operations in the web service. To
complete the implementation of the web service, these methods must be implemented. The methods
will typically access or modify content of a database based on the input parameters to the method, and
will often return a result. Most of the current MPOWER services use Hibernate to implement the
database operations, but it is up to the developer of new services to select the approach to use for this.

6.2.2.4 Deploying from Netbeans

When you finish with the implementation you can right click on the web application project to build
the project and get the WAR file that contains all the class files (Figure 65). Now you only need to
deploy the service to an application server and this can be done by right clicking the project and
choosing “Deploy” option (Figure 66). If your web service successfully deploys you will get an
address on which web service end point is listening (Figure 67).

The WAR file can be deployed on any server to make the service available to those who have the
permissions to access it.

6.2.2.5 Testing with soapUI

The soapUI plugin to Netbeans is a tool for testing your deployed web services. The tool allows the
developer to test a deployed service by creating SOAP request and receiving SOAP responses.

To perform testing with soapUI from Netbeans, you first have to create a Netbeans project using the
“Web Service Testing Project” type which is available under the SOA project category from the “New
Project” wizard when the soapUI plugin have been installed. The wizard of the testing project will

 Page 59 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

allow you to select the WSDL of the service to test. Check the “Generate TestSuite” check box in the
wizard. Further description of how to use soapUI can be found in the soapUI user guide:

http://www.soapui.org/userguide/index.html•

Further description the integration of soapUI with Netbeans can be found at:

http://www.soapui.org/Netbeans/index.html•

6.2.3 Physical level related services and components
MPOWER platform is an open platform, ready to be improved by adding new services. Different kind
of services can be added. E.g. installation of a new type of sensor/device in the environment can result
in adding services for accessing that sensor/device.

When a new sensor is to be integrated in the platform it can be done in five different manners. Each
one of them requires a specific work to be done when setting up the new service. Aforementioned FSA
is in charge of offering a homogeneous way of accessing the real heterogeneous network of sensors
within the environment of the MPOWER platform has. The architecture of FSA is divided into three
layers: Device Service Layer, Virtual Sensor/Actuator Layer and Adapter Layer. It is important to take
that into consideration and follow the steps presented on the figure below to process the task of
creating a new service.

A new sensor/
device is added

Exist another
senso equals?

Create a web
service for

accessing to the
new sensor/device

Nothing has to be
done

Exist an
adapter

suitable for the
new sensor/

device?

Exist a virtual
sensor/actuator
suitable for the

new sensor/
device?

Create a suitable
adapter for

accessing to the
new sensor/device

Create a virtual
sensor/actuator for

communicating to the
new sensor/device

yes

no

no

Yes

no

yes

Figure 47: Steps to be followed when creating a new service for accessing a new device type

Depending on the actual components and services deployed to the platform different steps should be
executed for creation of a new service for device accessing.

First of all checking on already existing sensor/device of the same type should be executed. In case it
exists new service does not have to be created.

If this is not the case and no existing service can be used then first question to be answered is “Does
there exist a virtual sensor/actuator suitable for the new sensor/device?” That means, does there exist

 Page 60 of 75

http://www.soapui.org/userguide/index.html
http://www.soapui.org/netbeans/index.html

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

some component in the virtual sensor/actuator layer that knows to interpret the information that new
sensor is going to send? If the response is positive execute the next step. In case of negative response,
a new virtual sensor/actuator component able to interpret the information coming from the new sensor
should be created. For creating a new sensor/actuator it is necessary to know the specification of
sensor/device provided by manufacturer to code a component enable to handle the communication
with sensor/device according to the given specification.

In the next step the question to answer is “Does there exist an adapter suitable for the new
sensor/device?” In other words, does there exist an adapter able to deal with communication channel
for the new sensor/device and the information that is going to be sent? In case of positive response the
process can be continued in the next step. In case of negative response, new adapter component able to
deal with communication channel for the new sensor should be created. The created adapter
component must follow requirements specified (protocol) by communication channel that it is going to
deal with.

When the process finishes an interface via which applications MPOWER-based could access the new
sensor has to be created. That interface is a web service which is in charge of providing a single access
that is offered by FSA for communicating with sensors/devices.

6.2.4 HL7 particular case
As part of the medical and social services of the MPOWER platform the Medication management and
Calendar management services have been developed. We choose to describe these services as an
example of the overall service process definition in MPOWER platform. Additionally, we choose
these service as example since they involve HL7 health standard, thus we can demonstrate the
inclusion of health-standards into service design process.

Health Level Seven is an American National Standards Institute accredited Standards Developing
Organizations operating in health-care area. Health Level Seven’s domain is clinical and
administrative data, which by definition maps well to the MPOWER domain scope. HL7 Version 3
standard [8] uses well-defined methodology based on a Reference information model. The reference
information model provides an explicit representation of the semantic and lexical connections that
exist between the information contained in HL7 messages that are used to exchange medical data. The
HL7 methodology is fully technology independent, thus the process of going from business analyses
until completely defined message contents uses UML modelling paradigm and related diagrams, and is
completely independent of any technology that will be used in implementation stage. However, most
of the systems, including MPOWER, use XML enabled technology as the final message container.
The requirement of respecting the methodology implies that messages need to be specified using the
reference information model as the starting point. Further, messages are refined through domain
information model that select and defines messages that are relevant to some medical domain to a
refined message information model. The refined message information model contains messages
descriptions for specific operations and services. From this point HL7 tooling is used to derive
serialized messages and XML schemas that define the form and the content of the message in a
computer processable format.

6.2.4.1 Service definition process
The overall process of defining information models in the MPOWER platform is presented in Figure
28. The process uses “top-down” approach, thus it starts from detailed business requirements and
refines them in a stepwise fashion down to a software implementation. In the process, we identify the
required services, define interfaces that form the services, define the operations that make interfaces,
and finally define the messages that are used in operations. In the figure we can see parallel modelling

 Page 61 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

sequences of HL7 and MPOWER methodologies. The parallel modelling sequences are required
because each step of MPOWER modelling needs to be synchronized and correlated to HL7
specification in order to finally arrive to a complete service definition that is conformant to HL7
standards.

6.3 Step by Step guide for creating a service
Note to the reader: the content of this sub-chapter do to some degree overlap with the content of the
previous sub-chapters. However, the content of this chapter can still be of use to you, but some
issues are covered in less detail than one might expect, also the example provided is somewhat
larger than what one expected as a tutorial.

Following the discussion in Chapter 6.1, to run the service modelling process must have a working
installation of Enterprise Architect (Corporate edition 6.5.x) from Sparx Systems. In addition, for
generating server stub code based on web service description language document and deploying the
newly generated service should download Java EE 5 SDK Update 3 (this bundle includes Netbeans
IDE 6.0 Beta 1 and Sun Java System Application Server 9.1)

 [http://java.sun.com/javaee/downloads/ea/]. For testing the service operation with basic input and
output parameters, Netbeans can be used.

6.3.1 Service modelling
Here we will start from the point where the user scenarios are modelled in UML use cases. In Figure
48, is shown a part of the management UML use case diagram that shows the stakeholder management
use case which maps to specific scenarios of use (Figure 49). Then from the user scenarios and the use
cases we can extract the features (non functional and functional). The functional features are shown in
Figure 50 and indicate some “services” that need to be implemented. The service ActorControl
realizes those features as shown in Figure 51. So after we decided the service that will be implemented
we need to specify the service interface as shown in Figure 52. The services should be modelled
according to SOA Principles described by Erl, and guidelines on using IBM System Service UML
Profile.

uc Management

HealthCareProfessional

(from Stakeholder - HealthcareProfessional)

Indiv idual Plan

(from System - Health Information System)

Stakeholder
management

Configure homecare
system

HealthCare Organization

(from Stakeholder - Organization)

Figure 48: Management use case diagram

 Page 62 of 75

http://java.sun.com/javaee/downloads/ea/

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 49: Use case - Scenario mapping

custom Stakeholder management

add stakeholder
(stakeholder may
have user rights
to the system)

define relations
between
stakeholders

edit stakeholder
(including role)

enable/disable
stakeholder

(from Individual Plan)

Add plan element

(from Management)

Stakeholder
management

«trace» «trace»

«trace»«trace»

«trace»«trace»

«trace»«trace»

Figure 50: Stakeholder management features

 Page 63 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

class Rationale

add stakeholder
(stakeholder may
have user rights
to the system)

(from Stakeholder management)

define relations
between
stakeholders

(from Stakeholder management)

edit stakeholder
(including role)

(from Stakeholder management)

enable/disable
stakeholder

(from Stakeholder management)«ServiceProvider»
ActorManagement::

ActorControl

Figure 51: Actor Management rational

class ActorManagement

«ServiceProvider»
ActorControl

ActorManagement

«ServiceSpecification»
ActorManagementInterface::iActorManagement

+ addActor(HumanResourceEventCreate) : boolean
+ disableActor(SuspendHumanResource) : boolean
+ enableActor(ActivateHumanResource) : boolean
+ getActor(Message) : HL7Actor
+ removeActor(TerminateHumanResource) : boolean

Figure 52: Actor Management service interface

6.3.2 WSDL model transformation
Following the MDD approach we use the models as primary artifacts throughout the engineering
lifecycle. EA supports transformation of UML class models to WSDL models. The default
transformation builds elements for WSDL components, services (ports), bindings, and port-types. The
MPOWER WSDL transformation template (called MPowerWSDLTemplate.xml which you will find
in: https://project.sintef.no/eRoom/informatics/MPOWER/0_5037b) will generate more information of
the WSDL than the regular WSDL transformation. To use the template, you first have to import it into
the Enterprise Architect project. This is done by choosing the "Import reference data" from the "Tools"
tab. This import will modify some of the built-in transformations for WSDL. So the next step is to use
the MPOWER WSDL transformation template to generate a WSDL model from the service
description model in Enterprise Architect (as described below).

The first step is to right click on the <servicename> package and choose Transform Current Package
(Figure 53). Then, in the dialogue that appears, check the WSDL box and choose an appropriate target
location. Make sure to include child packages and press the “Do Transform” button (Figure 54). When
the process is done, a new WSDL package has been created in the <target package> (Figure 55). To
visualize the complete service structure, double-click the root-diagram to open (here:
ActorManagement class diagram, red rectangle in Figure 55) and add (drag) the elements in Bindings,
PortTypes and Services onto the root-diagram (Figure 56).

 Page 64 of 75

https://project.sintef.no/eRoom/informatics/MPOWER/0_5037b

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 53: Transformation a Service Package to WSDL in EA

Figure 54: The Model Transformation Dialogue

 Page 65 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 55: The transformation WSDL model hierarchy

class ActorManagement

«WSDL»
ActorManagement

ActorManagementInterface

«WSDLbinding»
Bindings::iActorManagement

+ addActor(addActorRequest, addActorResponse*)
+ disableActor(disableActorRequest, disableActorResponse*)
+ enableActor(enableActorRequest, enableActorResponse*)
+ getActor(getActorRequest, getActorResponse*)
+ removeActor(removeActorRequest, removeActorResponse*)

«WSDLportType»
PortTypes::iActorManagement

+ addActor(addActorRequest, addActorResponse*)
+ disableActor(disableActorRequest, disableActorResponse*)
+ enableActor(enableActorRequest, enableActorResponse*)
+ getActor(getActorRequest, getActorResponse*)
+ removeActor(removeActorRequest, removeActorResponse*)

«WSDLservice»
Services::ActorManagementInterface

iActorManagement

Figure 56: Complete service structure, with port type definition and binding to service

As a preparation for the next step that is the WSDL code generation, to set the target folder for the
WSDL file, double-click the WSDL component (red rectangle in Figure 55) in the root diagram (here:
ActorManagement class diagram, red rectangle in Figure 56) and specify the WSDL filename (the
service name can be used) in the second text-field in the dialogue.

To generate the WSDL file right-click the WSDL component and choose Generate WSDL (Figure
57). The Generate WSDL dialogue pops up (Figure 58). EA uses UTF-16 encoding whereas Netbeans
uses UTF-8 encoding as default. UTF-16 may work, but we choose to change into UTF-8. Do this
change and press “Generate”. The result is the WSDL code generation with the WSDL file being
stored to the target folder we selected earlier.

 Page 66 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 57: WSDL file generation

Figure 58: Generate WSDL dialogue

 Page 67 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

WSDL manual editing

6.3.3 Service Implementation
The implementation phase starts with the wsdl generation from Sparx Enterprise Architect. This wsdl
file is used as an input to Netbeans IDE. Netbeans generates server stub code, the web service files
that are needed for the implementation of the web service, using JAXB and JAX-WS specifications.

The first thing to do is create a new Netbeans project by choosing “New Project” from the “File” tab.
This command opens a dialogue on which you can choose the category and type of project you want to
create. For this purpose, should choose “Web” category folder and “Web Application” project as the
type (Figure 59). Then you press the “Next” button and should see a new dialogue on which you
should enter basic information about your project including name and location path (Figure 60). Next
you press “Finish” and the new Netbeans project named “ActorManagement” is created.

Now, to generate a new web service from the wsdl file EA produced, should right click on the created
web application project (under “projects” tab) and choose New Web Service from WSDL (Figure
61). A dialogue opens and you should write name and package for your web service as well as
determine the path of wsdl file from which you want to generate the service (Figure 62). When you
press the “Finish” button, code generation starts and if everything works you should see service
interface implementation like the one on Figure 63 You can change to the Source view and complete
the code of the service by implementing the web service interface (Figure 64).

Figure 59: Create new Netbeans project-type

 Page 68 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 60: Create new Netbeans project-information

Figure 61: Generating new service from wsdl file

 Page 69 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 62: Generating new service from the wsdl file-information

Figure 63: Generating web service

 Page 70 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 64: Generating web service - source view

6.3.4 Service Deployment
When you finish with the implementation you can right click on the web application project to build
the project and get the WAR file that contains all the class files (Figure 65). Now you only need to
deploy the service to an application server and this can be done by right clicking the project and
choosing “Deploy” option (Figure 66). If your web service successfully deploys you will get an
address on which web service end point is listening (Figure 67). To test if your deployed web service
is working well you should send soap request to this server and get a meaningful soap response. This
can be done by creating a web service client that generates and sends a soap request to the server
(deployed service) and retrieves a soap response.

The WAR file can be deployed on any server to make the service available to those who have the
permissions to access it.

 Page 71 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 65: Build the project

Figure 66: Deploy the web application

 Page 72 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Figure 67: Address of web service endpoint

 Page 73 of 75

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

Definitions, abbreviations and acronyms
Middleware: is computer software that connects software components or applications.

computer programsToolchain: is the set of that are used to create a product. The tools may be used in
a chain, so that the output of each tool becomes the input for the next.

Service Lifecycle: The SOA Lifecycle is a model that is intended to illustrate relationships and
dependencies between various independent lifecycles that comprise a mature, enterprise SOA
program.

SMART HOUSE: Smart house is a field within building automation, specializing in the specific
automation requirements of private homes and in the application of automation techniques for the
comfort and security of its residents.

UDDI: is an XML-based registry for businesses worldwide to list themselves on the Internet. UDDI is
often compared to a telephone book's white, yellow, and green pages. The project allows businesses to
list themselves by name, product, location, or the Web services they offer.

ANSI: American National Standards Institute.
API: Application Programming Interface.
CIM: Computation Independent Model.
EA: Enterprise Architect
ECG: Electrocardiogram.
EIB: European Installation Bus.
ESB: Enterprise Service Bus
FSA: Frame Sensor Adapter.
HL7: Health Level 7.
HVAC: Heating, Ventilation and Air Conditioning.
IDE: Integrated Development Environment
JDK: Java Development Kit
KNX: Konnex.
MDA: Model Driven Architecture.
MDSD: Model Driven Software Development.
OMG: Object Management Group.
PIM: Platform Independent Model.
POCA: Proof Of Concept Application
PSM: Platform Specific Model.
QoS: Quality of Services.
RIM: Reference Information Model.
SDO: Standards Developing Organizations.
SOA: Service Oriented Architecture.
SW: Software.
UML: Unified Modelling Language.
UDDI: Universal Description, Discovery, and Integration

 Page 74 of 75

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_components
http://en.wikipedia.org/wiki/Computer_program
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci213404,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci508228,00.html

D1.2 MPOWER handbook

Last printed 30/10/2008 09:09:00

References
[1] Java web service resource

http://java.sun.com/webservices/

[2] Web service resource
http://www.webserviceresource.com/

[3] D1.1 Overall Architecture
https://project.sintef.no/eRoomReq/Files/informatics/MPOWER/0_4e96d/D1.1%20Overall%20%
20Architecture.doc

[4] Judith Hurwitz, Service Oriented Architecture for Dummies , Wiley Publishing, Inc., 2007

[5] Enterprise Service Bus – OpenESB
https://open-esb.dev.java.net/AboutOpenEsb.html

[6] Rules Engine.
http://www.jboss.com/products/rules

[7] D2.2 Smart house and sensor integration design
https://project.sintef.no/eRoomReq/Files/informatics/MPOWER/0_60bbd/D2%202Smart_House_
and_sensor_integration_design%20%20with%20device%20manager(2)-4.doc

[8] HL7 v3 Normative Edition 2006
http://www.hl7.org

[9] George T., Westermann G.: Model Driven Architecture in einer service-orientierten
Anwendungslandschaft; JavaSpektrum 1/2006

[10] MDA – OMG
http://www.omg.org/mda/

[11] Using a Manually Created WSDL as a Web Service Client – last updated February 2008-10-24;
https://open-esb.dev.java.net/kb/v2/javaeesetut.html

[12] HL7 Reference Information Model;
http://www.hl7.org/Library/data-model/RIM/modelpage_mem.htm

 Page 75 of 75

http://java.sun.com/webservices/
http://www.webserviceresource.com/
https://project.sintef.no/eRoomReq/Files/informatics/MPOWER/0_4e96d/D1.1%20Overall%20%20Architecture.doc
https://project.sintef.no/eRoomReq/Files/informatics/MPOWER/0_4e96d/D1.1%20Overall%20%20Architecture.doc
https://open-esb.dev.java.net/AboutOpenEsb.html
http://www.jboss.com/products/rules
https://project.sintef.no/eRoomReq/Files/informatics/MPOWER/0_60bbd/D2%202Smart_House_and_sensor_integration_design%20%20with%20device%20manager(2)-4.doc
https://project.sintef.no/eRoomReq/Files/informatics/MPOWER/0_60bbd/D2%202Smart_House_and_sensor_integration_design%20%20with%20device%20manager(2)-4.doc
http://www.hl7.org/
http://www.omg.org/mda/
https://open-esb.dev.java.net/kb/v2/javaeesetut.html
http://www.hl7.org/Library/data-model/RIM/modelpage_mem.htm

	MPOWER Consortium
	Table of Contents
	Table of Figures
	1 Executive summary
	1.1 Objective
	1.2 Methods
	1.3 Results
	1.4 Conclusions

	2 Introduction
	2.1 Background and Rational
	2.2 Role of this deliverable
	2.3 Target audience
	2.4 Relationship to other MPOWER deliverables
	2.5 Structure of this document

	3 Description of the MPOWER platform
	3.1 Introduction
	3.2 Who should use the MPOWER Platform
	3.3 MPOWER Reference Architecture

	4 Installation guide
	4.1 Required tools, middleware and libraries
	4.1.1 Overview of requirements for scenarios
	4.1.2 Tool, middleware and library details
	4.1.2.1 UML Modelling
	4.1.2.2 Java Development Kit (JDK)
	4.1.2.3 Java IDE
	4.1.2.4 Object/relational persistence service
	4.1.2.5 Database
	4.1.2.6 Database driver libraries
	4.1.2.7 Application Server:
	4.1.2.8 Web service testing tool
	4.1.2.9 Enterprise Service Bus
	4.1.2.10 Rules Engine

	4.2 Getting access to the MPOWER Middleware and Tools

	5 Application Developer’s guide
	5.1 Introduction
	5.2 MPOWER services
	5.2.1 Communication Services
	5.2.2 Information Services
	5.2.3 Management Services
	5.2.4 Security Services
	5.2.5 Sensor Services
	5.2.6 MPOWER components

	5.3 How to use a MPOWER service
	5.3.1 Overview of the process
	5.3.2 Access MPOWER Information services
	5.3.3 Access MPOWER Physical level services
	5.3.4 Accessing HL7 services
	5.3.4.1 The Reference Information Model
	5.3.4.2 The Message Structure
	5.3.4.3 HL7 V3 Web Service Profile
	5.3.4.4 MPOWER HL7 services

	5.4 Example development process using a scenario
	5.4.1 Basic scenario
	5.4.2 Upgraded scenario
	5.4.3 Realization of basic scenario through business process
	5.4.4 Adaption of scenario through business process

	5.5 Step by Step guide for creating a small application
	5.6 Creating and using a business component in BPEL

	6 Service Developer’s guide to MPOWER
	6.1 How to create a service
	6.1.1 What is an MPOWER service?
	6.1.2 Overview of the MPOWER service development methodology
	6.1.3 MDA approach
	6.1.4 Capturing domain knowledge: User needs – scenarios, use cases and features
	6.1.5 Service Specification – the Platform Independent Models

	6.2 Using the service developer toolchain
	6.2.1 MPOWER toolchain overview
	6.2.2 Information related service
	6.2.2.1 Modelling using Enterprise Architect
	6.2.2.2 Transforming to WSDL Model and further to WSDL
	6.2.2.3 Importing WSDL and completing the code in Netbeans
	6.2.2.4 Deploying from Netbeans
	6.2.2.5 Testing with soapUI

	6.2.3 Physical level related services and components
	6.2.4 HL7 particular case
	6.2.4.1 Service definition process

	6.3 Step by Step guide for creating a service
	6.3.1 Service modelling
	6.3.2 WSDL model transformation
	6.3.3 Service Implementation
	6.3.4 Service Deployment

	Definitions, abbreviations and acronyms
	References

